Hand-held Optical Power/Energy Meter

841-PE

User's Manual

Warranty

Newport Corporation warrants that this product will be free from defects in material and workmanship and will comply with Newport's published specifications at the time of sale for a period of one year from date of shipment. If found to be defective during the warranty period, the product will either be repaired or replaced at Newport's option.

To exercise this warranty, write or call your local Newport office or representative, or contact Newport headquarters in Irvine, California. You will be given prompt assistance and return instructions. Send the product, freight prepaid, to the indicated service facility. Repairs will be made and the instrument returned freight prepaid. Repaired products are warranted for the remainder of the original warranty period or 90 days, whichever is longer.

Limitation of Warranty

The above warranties do not apply to products which have been repaired or modified without Newport's written approval, or products subjected to unusual physical, thermal or electrical stress, improper installation, misuse, abuse, accident or negligence in use, storage, transportation or handling. This warranty also does not apply to fuses, batteries, or damage from battery leakage.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. NEWPORT CORPORATION SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE PURCHASE OR USE OF ITS PRODUCTS.

First printing 2004

© 2004 by Newport Corporation, Irvine, CA. All rights reserved. No part of this manual may be reproduced or copied without the prior written approval of Newport Corporation.

This manual has been provided for information only and product specifications are subject to change without notice. Any change will be reflected in future printings.

Newport Corporation 1791 Deere Avenue Irvine, CA, 92606 USA P/N 41312-01 Rev. A

Declaration of Conformity

We declare that the accompanying product, the model 841-PE, identified with the **C** mark, meets the intent of the Electromagnetic Compatability Directive, 89/336/EEC and Low Voltage Directive 73/23/EEC. Manufacturer's Name: Newport Corporation Manufacturer's Address: 1791 Deere Avenue Irvine, CA 92606

	11 me, 011 2000	
	USA	
Type of Equipment:	Laser Power/Energy Meter	
Model No.:	841-PE	
Year of test & manufacture:	2002	
Standard(s) to which Conformity is declared:		
EN 61326: 1997 Emission generic standard		

Standard	Description	Performance Criteria
EN 61326 :1997	Limits and methods of measurement of radio interference characteristics of information technology equipment. Testing and measurements of conducted emission	Class A
EN 61326 : 1997	Limits and methods of measurement of radio interference characteristics of information technology equipment. Testing and measurements of radiated emission	Class A
EN 61000-4-2:1995	Electromagnetic compatibility (EMC) – Part 4: Testing and measurements techniques- Section 4.2: Electrostatic discharge.	Class B
EN 61000-4-3:1996	Electromagnetic compatibility (EMC) – Part 4: Testing and measurements techniques- Section 3: Radiated, Radio Frequency immunity.	Class A
ENV 50204: 1995	Radiated Electromagnetic field from digital radio telephones- immunity test 900MHz pulsed	Class A
EN 61000-4-4:1995	Electromagnetic compatibility (EMC) – Part 4: Testing and measurements techniques- Section 4: Electrical fast transient/burst immunity.	Class B
EN 61000-4-6:1996	Electromagnetic compatibility (EMC) – Part 4: Testing and measurements techniques- Section 6: Immunity to conducted Radio Frequency.	Class A

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s) and Standard(s).

Alain Danielo VP European Operations

Dan Dunahay Director of Quality Systems

Zone Industrielle 45340 Beaune-la-Rolande, France 1791 Deere Avenue Irvine, CA USA

Technical Support Contacts

North America & Asia

Europe

Newport Corporation Service Dept.

1791 Deere Ave. Irvine, CA 92606

Telephone: (949) 253-1694

Telephone: (800) 222-6440 x31694

Asia

Newport Opto-Electronics Technologies

253 Aidu Road, Bld #3, Flr 3, Sec C, Shanghai 200131, China

Telephone: +86-21-5046 2300

Fax: +86-21-5046 2323

Newport Corporation Calling Procedure

If there are any defects in material or workmanship or a failure to meet specifications, promptly notify Newport's Returns Department by calling 1-800-222-6440 or by visiting our website at <u>www.newport.com/returns</u> within the warranty period to obtain a **Return Material Authorization Number (RMA#)**. Return the product to Newport Corporation, freight prepaid, clearly marked with the RMA# and we will either repair or replace it at our discretion. Newport is not responsible for damage occurring in transit and is not obligated to accept products returned without an RMA#.

E-mail: <u>rma.service@newport.com</u>

When calling Newport Corporation, please provide the customer care representative with the following information:

- Your Contact Information
- Serial number or original order number
- Description of problem (i.e., hardware or software)

To help our Technical Support Representatives diagnose your problem, please note the following conditions:

- Is the system used for manufacturing or research and development?
- What was the state of the system right before the problem?
- Have you seen this problem before? If so, how often?
- Can the system continue to operate with this problem? Or is the system non-operational?
- Can you identify anything that was different before this problem occurred?

Newport/MICRO-CONTROLE S.A. Zone Industrielle 45340 Beaune la Rolande, FRANCE Telephone: (33) 02 38 40 51 56

Safety Information

Do not use the 841-PE if the device or the detector looks damaged, or if you suspect that the 841-PE is not operating properly.

Appropriate installation must be done for water-cooled and fan-cooled detectors. Refer to the specific instructions for more information. The user must wait for a while before handling these detectors after power is applied. Surfaces of the detectors get very hot and there is a risk of injury if they are not allowed to cool down.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, it is suggested to try to correct the interference by taking one or more of the following steps:

- Reorient or relocate the receiving antenna.
- Increase the distance between the equipment and receiver.
- Connect the equipment to an outlet that is on a different circuit than the receiver.
- Consult the dealer or an experienced radio/TV technician for help.

SYMBOLS

The following international symbols are used in this manual:

Refer to the manual for specific Warning or Caution information to avoid any damage to the product.

DC, Direct Current

Table of Contents

W	arra	anty	i
Τe	echr	nical Support Contacts	iv
Sa	afety	y Information	v
Li	st o	f Illustrations	X
1	Ge	eneral Information	1
	1.1	Introduction	1
	1.2	Unpacking	1
	1.3	Parts List	2
	1.4	Specifications	2
	1.5	Front Panel Description	4
		1.5.1 I/O and backlight control key.	4
		1.5.2 \leftarrow , \uparrow , \rightarrow , \downarrow Arrow keys	4
		1.5.3 ENTER key	4
		1.5.4 FUNCTION Key	4
		1.5.5 LCD Screen	5
	1.6	Top Panel Description	5
2	Sy	stem Operation	7
	2.1	Accessing the Menu Structure	7
	2.2	Making a Measurement	9
	2.3 Top Level Menu Structure		
		2.3.1 Display Menu	11
		2.3.1.1 Real Time Display	11
		2.3.1.2 Histogram Display	12
		2.3.1.3 Line Plot Display	13
		2.3.1.4 Statistics Display	13
		2.3.1.5 Digital Tuning Needle Display	14

2.3.1.6 Status Display		14	
2.	3.1.7	View File	15
2.3.2	Scal	e Menu	15
2.3.3	Sett	ings Menu	16
2.	3.3.1	Wavelength Setting	17
2.	3.3.2	Corrections Setting	18
2.	3.3.3	Data Sampling Settings	19
2.	3.3.4	Trig Level Setting	24
2.	3.3.5	Period Multiplier	25
2.	3.3.6	Refer Values	25
2.	3.3.7	Review Settings	26
2.	3.3.8	Save Contrast	
2.	3.3.9	Communication	
2.3.4	Con	trol Menu	27
2.	3.4.1	Zero Offset	27
2.	3.4.2	Acquire Data	
2.	3.4.3	Transfer File	
2.	3.4.4	Statistics Mode	29
2.	3.4.5	Relative Mode	29
2.	3.4.6	Calo Mode	29
2.	3.4.7	Analog OUT	30
2.	3.4.8	Anticipation	30
2.	3.4.9	Display Hi Res	31
2.	3.4.10	View Data	31
2.	3.4.11	"?"	31
	4 a 1		~~
npu	ter I	nterracing	32
Incto	llation		30

3	Computer Interfacing		32
	3.1	Installation	
	3.2	Setup	
		3.2.1 COM Port Verification	
		3.2.2 Establishing Communication	
		3.2.3 HyperTerminal Settings Shortcut	
	3.3	Software	
4	Со	mmand Reference	35

4 Command Reference		35		
	4.1	Comn	nands and Queries	
		4.1.1	Command Format	
		4.1.2	Command Directory	

4.2	Serial com	mands	38
	4.2.1 Dis	play Commands	38
	4.2.1.1	Set Display	38
	4.2.1.2	Set Scale	38
	4.2.1.3	Set dBm Display	39
	4.2.1.4	Set High Resolution Display	39
	4.2.2 Me	asurement Commands Data Acquisition	40
	4.2.2.1	Query Current Value	40
	4.2.2.2	Query New Value Ready	40
	4.2.2.3	Query Statistics Data	40
	4.2.2.4	Set Logging Start/Stop	41
	4.2.2.5	File Download	41
	4.2.3 Me	asurement Commands Setup	42
	4.2.3.1	Set Wavelength Correction (818P & 818E detectors or	1).42
	4.2.3.2	Set Attenuator (818P & 818E detectors only)	42
	4.2.3.3	Set Multipliers	42
	4.2.3.4	Set Offsets	43
	4.2.3.5	Query Data Sampling Settings	43
	4.2.3.6	Configure Data Sampling	44
	4.2.3.7	Set Trigger Level	45
	4.2.4 Me	asurement Commands Control	45
	4.2.4.1	Enable Statistics	45
	4.2.4.2	Set Calorimeter Mode	45
	4.2.4.3	Set Anticipation	46
	4.2.4.4	Set Zero Offset	46
	4.2.5 Inst	rument and Detector Information Commands	46
	4.2.5.1	Query Version	46
	4.2.5.2	Query Detector Head Name	46
	4.2.5.3	Query Status	46
	4.2.5.4	Query Battery Power	48
	4.2.5.5	Set Internal Clock	48
	4.2.6 Inst	rument Control Commands	49
	4.2.6.1	Set Backlight	49
	4.2.6.2	Set Analog Output	49
	4.2.7 Con	nmunications Commands	49
	4.2.7.1	Test Communication	49
	4.2.7.2	Init Serial Port	49

<u>5</u>	<u>5 Error Messages 5</u>		
6	Ма	intenance	52
	6.1	USB installation for the 841-PE	
	6.2	Free Software and Firmware Upgrades	
	6.3	Battery Charging	
7	Se	rvice Information	54
	7.1	Service Form	55
	Ар	pendix A: Attenuator / Diffuser C	alibration
	Pro	ocedure	57

Appendix B: Binary Programming (for Advanced Programmers)

anced Programmers)	
Binary Mode Rules	
Binary Command Reference	60

List of Illustrations

Fig. 1-1 841-PE Front Panel	3
Fig. 1-2 841-PE Top Panel	5
Fig. 2-1 The menu bar	8
Fig. 2-2 The dialog box	8
Fig. 2-3 View of the first group of 841-PE menus	11
Fig. 2-4 Real time display	12
Fig. 2-5 Display options menu	13
Fig. 2-6 Statistics display	14
Fig. 2-7 Digital needle display	14
Fig. 2-8 Status display	15
Fig. 2-9 View File screen	15
Fig. 2-10 Scale menu	16
Fig. 2-11 Settings menu	17
Fig. 2.12 Setting Correction menu	18
Fig. 2-13 Data sampling parameters window	
Fig. 2-14 Pass/Fail menu	25
Fig. 2-15 Review Settings screen	
Fig. 2-16 View of the Menu Structure	27

1 General Information

Introduction

To obtain the full performance from the 841-PE, we recommend that you read this manual carefully.

The 841-PE is a microprocessor-based power and energy meter that uses the latest technology to provide a multitude of options in a user-friendly environment. It is a complete power and energy meter, providing the user with everything from statistical analyses to data logging. It allows the user to store up to 50,000 data points in its internal memory. Moreover, it can be updated over the internet by connecting the USB or the RS-232 port to a personal computer.

The 841-PE has enhanced network capabilities that take further advantage of the USB and RS-232 ports for data acquisition and remote control. It can transfer data files to a PC for more sophisticated data analysis and respond to commands through the PC interface. The CD included with this meter contains LabVIEW drivers that will transform your PC screen into a virtual 841-PE. While having a copy of LabVIEW installed on your PC is required in order to use this CD, LabVIEW is not needed for programming the instrument in general. See Section 3 for communication with a computer.

Easy software and firmware upgrades

Keep in touch with the latest improvements to our user-friendly software. You can download the latest software and firmware versions anytime from our website <u>www.newport.com</u> and install it on the 841-PE with the serial interface. You will find all the necessary information on downloading and upgrading in Section 6.2.

Unpacking

Each Newport 841-PE is thoroughly tested and calibrated prior to shipment.

Visually inspect your 841-PE unit after removing it from the shipping container. If you see any damage, retain all packaging materials and shipping receipts. Any damage claim should be made promptly to the transportation company. Notify the nearest Newport representative concerning the claim, so that any repair or replacement can be arranged as soon as possible.

Parts List

The following is a list of parts included with the 841-PE Handheld Power Meter. Please make sure everything is present before discarding packing materials.

- 841-PE handheld meter with stand
- Battery pack
- Power supply / battery charger
- Software CD
- USB cable
- This manual

Specifications

The following specifications are based on a one-year calibration cycle, an operating temperature of 18°C to 28°C (64°F to 82°F) and a relative humidity not exceeding 80%.

Digital Display	58 x 38 mm LCD, 160 x 240 Pixels
Display Rate	3 Hz numeric display
	15 Hz bar graph & needle display
Bar Graph	165 divisions
Data Displays	Real time, Line plot, Histogram, Statistics, Digital tuning needle
User input correction factors	2 multipliers and 2 offsets (7 digits floating point)
Analog Output	$0-1$ volt, full scale, $\pm 1\%$
Computer Interfaces	USB and RS-232 ¹
Dimensions (without stand)	230 (L) x 95 (W) x 55 max (H) mm
Weight	0.51 kg
Weight (with stand)	0.58 kg
Battery Pack	4 rechargeable 1.2 V Ni-MH AA
Battery Life ²	7 hours
Battery Charge Time	6 hours to full charge
Universal Power Supply	Input: 100/240 VAC 50-60 Hz, Output 12 VDC 1.5 A

General Specifications 841-PE

¹ USB cable included. RS-232 cable sold separately (part number 841-CAB).

² Without backlight.

Power Range	1 nW to 10 kW
Low Power Scales	3nW, 10nW, 30nW, 100nW, 300nW, 1µW, 3µW,
(with 818-series detectors)	10μW, 30μW, 100μW, 300μW, 1mW, 3mW, 10mW, 30mW, 100mW, 300mW, 1W, 3W
High Power Scales	30mW, 100mW, 300mW, 1W, 3W, 10W, 30W, 100W,
(with 818P-series detectors)	300W, 1kW, 3kW, 10kW
Resolution (digital)	5 μ W on the 30 mW scale
Meter Accuracy	$\pm 0.5 \% \pm 5 \ \mu V \ full \ scale^3$
Response Time (accelerated) ⁴	1 sec
Sampling Frequency	390 Hz
Statistics	Current value, Max, Min, Average, Std Dev., RMS stability, PTP stability, Time

Power Meter Specifications

Energy Meter Specifications

Energy Range	6μJ to 20 kJ		
Energy Scales	100μJ, 300μJ, 1mJ, 3mJ, 10mJ, 30mJ, 100mJ, 300mJ, 1J, 3J, 10J, 30J, 100J, 300J, 1kJ, 3kJ, 10kJ, 30kJ		
Resolution (digital)	50 nJ		
Accuracy ⁵	1.0 % < 500 Hz		
	2.0 % ≥ 500 Hz		
Default Trigger Level	2 %		
Software Trigger Level	0.1% to 99.9%, 0.1% resolution		
Repetition Frequency	1000 Hz		
Statistics	Current value, Max, Min, Average, Std Dev., RMS stability, PTP stability, Pulse #, Repetition Rate, Avg Power		
Data Storage	50,000 points ⁶		

 $^{^{3}}$ The 5µV bias can introduce an error into low power measurements when using the 818-series Low Power Detectors. It is essential to use the Zero Offset to rezero the 841-PE before making a measurement in these conditions. It is always good practice to use the Zero Offset. See section 2.2. ⁴ Varies with individual detector (see 818P Series Detector Manual).

⁵ Including linearity.

⁶ Up to 225,000 if not using any advanced features that require memory.

Figure 1-1 841-PE Front Panel

Front Panel Description

1.1.1 I/O and backlight control key.

The I/O key has two functions:

841-PE on and off

Pressing the I/O key quickly when the 841-PE is OFF turns the 841-PE ON (do not hold the I/O key). To turn off the 841-PE, press and hold the I/O key a few seconds. To prevent battery leakage and to increase battery life, we recommend turning off the 841-PE when not in use.

Backlight control

With 841-PE ON, pressing the I/O key very quickly switches the LCD screen **Backlight ON or OFF**. If you are working without the external power supply, turn the backlight off for longer battery life.

1.1.2 ←, \uparrow , →, \downarrow Arrow keys.

The Arrow keys allow the user to browse through the menus. Press the **Right** Arrow key until you reach your desired option. To go backwards, press the **Left** Arrow key.

1.1.3 ↓ ENTER key.

The ENTER key selects the highlighted option.

1.1.4 FUNCTION Key

The FUNCTION key gives access to the MENU BAR.

1.1.5 LCD Screen

58 x 38 mm Liquid Crystal Display Screen, 160 X 240 pixels. Press and hold down the FUNCTION key to use the Up and Down arrow keys ($\uparrow \downarrow$) to increase and decrease the LCD screen contrast.

Top Panel Description

Fig. 1-2 841-PE Top Panel

1 EXTERNAL POWER SUPPLY INPUT JACK:

Input voltage required: 12 VDC/800 mA.

2 SERIAL INTERFACE CONNECTOR (RS 232):

This interface allows remote control and data transfers between the 841-PE and a computer, a terminal, a printer or any device that has a serial communication port.

3 USB INTERFACE CONNECTOR:

This interface allows remote control and data transfers between the 841-PE and a computer that has a USB communication port.

4 0 to 1 VOLT ANALOG OUTPUT:

For monitoring laser average power or energy by using external equipment such as a chart recorder, a computer with an analog interface, a voltmeter, etc.

The output signal represents the amplified and anticipated power detector response in the case of a power measurement. (In the case of an energy measurement, the output signal is a DC voltage representing the pulse energy value).

The 1 V value corresponds to the full scale reading of the selected range. This will provide the best signal-to-noise ratio. The measured power or energy is then related to the output voltage and to the selected range in this manner:

```
Power = V_{output} \times Max of Range selected
```

 $Energy = V_{output} \times Max$ of Range selected

For example:

1.00 V corresponds to 10 Watt on the 10 W range

0.25 V corresponds to 2.5 Watt on the 10 W range

0.10 V corresponds to 30 milliwatts on the 300 mW range

Specifications:

Maximum output voltage:	1 V
Output impedance:	10 kΩ
Connector type:	Female 1/8" jack

5 PROBE INPUT JACK:

The 841-PE uses a DB15 female connector to mate with compatible Newport detector heads.

2 System Operation

This section contains important information concerning the installation and operation of the 841-PE.

When delivered, the 841-PE just needs the battery pack installed and it is ready to use. Just insert a detector head in the Probe Input Jack (#5 in Figure 1-2) and press the I/O key. If the meter doesn't turn on, the battery pack may be drained. Please turn it off, plug in the charger and let it charge for several hours before attempting to use again.

Accessing the Menu Structure

The powerful CPU of the 841-PE, combined with the WindowsTM CE operating system, provides easy and intuitive access to all of its functions. This user-friendly WindowsTM-based interface is controlled by four **Arrow** keys, an \downarrow key (**Enter** key) and an **F** key (**Function** key). For users familiar with WindowsTM, it works as any WindowsTM menu, with the **ALT** key being replaced by the **F** key.

Pressing the F key (see Figure 2-1) provides access at any time to the menu bar and, from there, to the five main menus. Use the Left and Right arrow keys to go from one menu to the next. The selected menu drops down to show its options. Use the Up and Down arrow keys to select the desired item from the menu. Once the desired item is highlighted, press the Enter "," key to activate the function. When a menu option has an arrow ">" at the end, pressing Enter "," or the Right Arrow key "→" opens a submenu where you can select the function. For example, in the case of the Setting menu, first select Corrections with the Down Arrow key, followed by the Enter "," or the Right Arrow key "→" to access the submenu. Move to the desired option with the arrow keys and press the Enter "," key to activate.

Display	Scale	Settings		Ctrl	?
		Wavelength Settings	▶ Review		
		Corrections	None		
		Data Sampling	Multiplier#1 (0.1200000)		
		Period Multiplier	Offset #1		
		Trig Level (2%)	Multiplier #2		
		Refer Values	Offset #2		

Fig. 2-1 The Menu Bar

Some menu options require additional information to be activated properly. In this case, a dialog box (see Figure 2-2) appears. There you enter the setting values of your choice. Use the **Arrow** keys to highlight a number and press the **Enter** "J" key to select it. The selected number will appear in the upper box. Repeat the operation until the desired number has been fully entered. Then go to "OK" and press **Enter** "J" to validate your number. You can correct a mistake by selecting the **Back** button (\leftarrow) located in the bottom right of the dialog menu. Use the **Decimal** button (.) to enter decimals. The **Percent** button (%) gives you the flexibility to enter a value as a percent rather than a fraction. For example, you can enter the same multiplier as 0.925 or 92.5%.

Fig. 2-2 The Dialog Box

Making a Measurement

This section will show you the fastest way of making a laser power and energy measurement with the 841-PE and a Newport power or energy detector.

The 841-PE Handheld Power and Energy Meter automatically recognizes all Newport low-power, high-power and energy detectors terminated with a 15pin connector. All calibration and technical data required for optimum operation of the detector will be automatically downloaded from the EEPROM in the DB15 connector. This data includes sensitivity, model, serial number, version, wavelength correction factors, and time response.

Quick power and energy measurement procedure:

- 1- Install the power or energy detector head on its optical stand.
- 2- First, slide the connector latch to the right to unlock the connector.
- 3- Turn the 841-PE off and connect a compatible power or energy detector (see Table 1-2 below) to the 841-PE using the PROBE INPUT JACK (see Fig. 1-2). It is recommended to turn the 841-PE off before connecting a new head in order to prevent any loss of information from the detector head EEPROM.

Detectors compatible with 841-PE Power and Energy Meter818P-Series High Power Detectors818E-Series Energy Detectors818-XX/841-Series Low Power Detectors

Table 1-2. Detectors compatible with the 841-PE

- 4- Slide the latch to the left to lock the connector into place.
- 5- Switch the 841-PE ON using the I/O key.
- 6- When using an 818-Series Low Power or 818P-Series High Power detectors, the 841-PE will default into power measurement mode. When using 818E-Series Energy detectors, it will default into energy measurement mode. The meter will also default to autoscale. If you are using an 818-Series Low Power detector, to obtain measurements in dBm, select Settings / Power Unit / dBm.
- 7- Remove the detector's protective cover and put the detector head into the laser beam path. The entire laser beam must be within the sensor aperture. Do not exceed maximum specified power or energy densities. For the most accurate measurement, spread the beam across 60% to 80% of the sensor area.

NOTE:

Power detectors can be used with both CW and pulsed lasers. Energy detectors can only be used with pulsed lasers.

Adjusting the zero (steps 8 and 9). If using an 818-series Low Power Detector, go to step 10. If using an 818P-series High Power Detector, proceed with step 8. For 818E-series Energy Detectors, jump to step 11.

8- Block off laser radiation to the detector.

The power read by the 841-PE when no laser beam is incident on the detector may not be exactly zero. This is due to the fact that the detector is not thermally stabilized OR there is a heat source in the field of view of the detector when you turned on the 841-PE.

9- To reset the zero, wait until the reading has stabilized and select Zero Offset in the Ctrl (Control) menu. Then select Rezero. You are now ready to make an accurate measurement. To turn the Zero Offset off, select Off, To reselect the previous offset, select Undo.

Low Power zeroing:

10- To set a Low Power Detector to zero, select Ctrl / Set Diode Zero, and press the J Enter key. A message appears requesting that you put the cover on your photodiode and then press the J Enter key. The 841-PE passes through all the scales to determine the zero diode for each scale. The message "Diode Zero Done" appears when the 841-PE has determined the zero diode.

Notes:

- Refer to specific power detector documentation for complete installation and operating instructions.
- The 818P-series High Power Detectors are thermal sensors that are sensitive to temperature variations.

For high-precision measurements, it is recommended to:

- Allow the power detector temperature to stabilize before zeroing the 841-PE.
- Do not touch the detector head when handling the power detector. Touch only the stand.
- Avoid forced airflow or drafts around the detector.
- 11- Apply the laser beam to the detector head.
- 12- The laser beam average power or energy will be displayed in three ways for your convenience (see section 2.3.1):
 - a. Digitally for real time measurement.
 - b. On a digital needle for an easy visualization of the laser beam power variation during laser fine-tuning.
 - c. On a histogram to allow the laser beam's long-term stability to be evaluated.

Top Level Menu Structure

This section describes in detail the first group of menus essential to the 841-PE operation. Refer to Figure 2-3 for a schematic view of the menu structure. The menus differ depending on the type of detector that is currently being used. The **Display** menu lets you view your measurement in various ways. The **Scale** menu allows you to fix a specific measurement scale instead of autoscaling. Use the **Settings** menu during setup to select the best parameters for the measurement task at hand. These menus provide the flexibility needed to accommodate a wide variety of measurement conditions. The more active controls you are likely to use during your measurements are in the **Ctrl** menu. They are described in Section 2.3.4.

Display	Scale		Ctrl	?
$\sqrt{\text{Real Time}}$	Auto	Wavelength ▶ Review Settings		
Histogram	Zoom In	Corrections ► Save Settings		
Line Plot	Zoom Out	Data Sampling Load Settings		
Statistics		Period Multiplier Save Contrast		
Tuning Needle		Trig Level (2.0%) Communication ►		
Status		Refer Values		
View File				

2.1.1 Display Menu

The various displays offered by the 841-PE allow you to quickly view your measurement in several different ways. You will appreciate the easy-to-view high resolution 58 x 38 mm graphic, the LCD display and the backlight for use in poor ambient light conditions. The **Display** menu includes five options, (see Figure 2-3) that allow you to select the best way to display the measurement according to your specific needs. You can switch from one option to another without interfering with the measurements.

2.1.1.1 Real Time Display

This display is automatically selected when any detector is connected to the 841-PE. The top and bottom of the screen shows important settings so you can see the conditions as well as the measurement (see Figure 2-4). The **Power** or **Energy** digital display is presented in giant format for easy reading

in all conditions. Directly below, the **Bargraph** display, as wide as the screen, presents the measurement in an analog format, very useful for rapidly varying values. Displayed on the upper left part of the screen is the **Detector Model**. Under the Bargraph is the current **Scale**. At the bottom of the screen the leftmost box contains the actual power or energy received by the head before any correction factors are applied. The center box gives the resolution and the rightmost box displays the wavelength. The resolution is the smallest increment that the current value may change on a given scale. The wavelength value tells you what NIST-based calibration factor is currently being used. You can find the factors on the Calibration Report (for Low Power Detectors) or the *Personal Wavelength Correction*TM certificates (for High Power and Energy Detectors) that are shipped with your detector.

Fig. 2-4 Real Time Display

With an 841-PE, you can also choose either the high resolution mode for the most significant digits available, or the standard resolution to filter out unimportant fluctuations in measurement. This is a setting in the control (**Ctrl**) menu of the 841-PE.

2.1.1.2 Histogram Display

The histogram option gives a quick look at the laser beam's long-term stability and trends. The histogram adds new data points at a rate of 3 Hz and is dynamically scrolled to the left for each new point as soon as it reaches the right side of the screen.

	Scale	Settings	Ctrl	?
Real Time				
√ Histogram				
Line Plot				
Statistics				
Tuning Needle				
Status				
View File				

Fig. 2-5 Display Options Menu

2.1.1.3 Line Plot Display

The line plot also shows the trends in your data. Actual values are sometimes easier to read than with the Histogram.

2.1.1.4 Statistics Display

In Statistics display mode, the statistical analysis screen pops-up on top of the Main display. This screen (Figure 2-6) gives a complete statistical analysis of the measured data. See Section 2.3.3.3 for a detailed description of each parameter. Select the **Start** button to start or restart the data sampling and statistical calculations. Use the **Stop** button to stop the data sampling and statistics before you reach the end of the selected sampling time. The last statistical values calculated remain on screen so you can view them later, even if you close and reopen the Statistics window. To set the data to zero, select **Reset**. To restart the data sampling, select **Start**. The **Close** button closes the statistics window so you can see the Main display again but does not interfere with the statistics being computed. The data sampling and statistical calculations continue with this window closed or open, and are independent of the display you select. You can open and close the statistics display window to check on the statistics as often as you like.

The values in this display provide an additional digit of resolution to allow you to benefit from the improved precision of large samples. You must understand your sample size well enough to know if this additional digit is significant.

Statistics		
Current Value:	0.9512 W	Close
Maximum Value:	0.9519 W	Start
Minimum Value:	0.9505 W	Stop
Average Value:	0.95118 W	Reset
Std deviation:	0.9135 mW	Cancel
RMS Stability:	0.096 %	period
PTP Stability:	0.147 %	
Time:	4/10 Sec	
Fig.	2-6 Statistics Display	

2.1.1.5 Digital Tuning Needle Display

When you select the **Tuning Needle**, a graphical interface shows a real-time digital needle. The deflection of the digital needle is proportional to the real-time measurement. The 15 Hz refresh rate makes it an excellent tool for laser tuning and alignment. It is marked for use with any scale setting in the 841-PE (in other words, you will need to know the current scale in order to interpret the tuning needle).

Fig. 2-7 Digital Needle Display

2.1.1.6 Status Display

The Status Display mode shows all the major adjustable parameters currently active for the detector head in one convenient place (see Figure 2-8).

Head Name :	818E-10-50-S	Close
Multiplier 1	1.0000000	
Offset 1	0.0000000	
Multiplier 2	1.0000000	
Offset 2	0.0000000	
Wavelength :	1064 nm	
Trigger Level:	2.0 %	
Scale :	1.000 mJ	
Analog Out:	Off	
Mode	Energy	

Fig. 2-8 Status display

2.1.1.7 View File

The View File mode allows you to view data previously acquired. Choose between standard (Std) notation and scientific (Sci) notation.

Digit :	Normal	•
	Close	•
Head: 81	8E-10-50-S	
Date: 200	03/09/10 - 10:34:34	
Unit: Jou	le	
Sample I	Rate: 100% of Pulses	
Sample I	Period: 500 Pulses	
Total Du	ration: 1 Periods	

Fig. 2-9 View File screen

2.1.2 Scale Menu

The scale can be set to the automatic scaling mode (Auto mode) or to a specific fixed scale, which depends upon the specific detector head, using the arrow keys on the keypad. Once the Newport detector has been automatically identified from the detector head's EEPROM (done at boot-up of the 841-PE), the scale menu available for that particular detector is the only one available. Upon changing detectors, and re-booting, a different scale menu will be available. Figure 2-10 shows the scale menu for an energy detector.

Fig. 2-10 Scale menu

The **Scale Menu** is used to select the signal level read with a detector head. When a new detector is connected, the autoscale is the default option. In this condition the 841-PE automatically selects the best scale for the value being measured.

The checkmark beside the scale number shows the currently selected scale. To change the scale, simply select a scale value from the appropriate range. The 841-PE only shows scale values that fall within the detector head's range.

When in a manually selected scale, you should always use the next higher scale to the measured value, for maximum precision.

Special care must be taken in the case of widely varying pulse energy to ensure that every pulse is detected. Contrary to the case of a power measurement where the autoscale adjusts continuously to the measured value, the autoscale in energy mode bases its scale selection on the energy of the previous pulse. A pulse with energy less than 2% of the energy of the previous pulse will not be detected. To avoid this problem, set the scale manually to a lower level. In this case, you measure this lower level when the higher energy pulses are saturated.

2.1.3 Settings Menu

Options in the **Settings menu** define user-adjustable acquisition parameters. All correction factors that will affect the reading can be easily programmed. That could be for a beam sampler, attenuator, or other optics that require you to multiply and/or add offsets to the detector reading. You can also adjust for

Display	Scale	Settings	Ctrl	?
		Wavelength	Review Settings	
		Corrections	Trig Level (2.0%)	
		Data Sampling	Save Settings	
		Period Multiplier	Load Settings	
		Trig Level (2.0%)	Save Contrast	
		Refer Values ▶	Communication	

Fig. 2-11 Settings menu

a wavelength other than the calibration wavelength. A custom correction factor can also be keyed in. Pre-programmed wavelength correction factors dedicated to each detector head are also available and automatically loaded from the detector EEPROM.. Data Sampling and Trigger Level, as well as the commands for saving and loading your settings are also found in the Settings menu.

2.1.3.1 Wavelength Setting

The Wavelength menu is used to select the proper wavelength at which the detector is to be used. It applies a correction to adjust for the variation in responsivity at different wavelengths. When a new detector is connected to the meter, and the meter has been re-booted, the calibration wavelength is the default selection.

The checkmark beside the wavelength shows the current selection. To change the wavelength, select an appropriate wavelength from the Wavelength menu. The 841-PE only allows you to choose values that fall within the detector's range. If you select or enter a value that is not valid, an error message appears and the 841-PE automatically selects the default value. This is the wavelength used for calibration at Newport during manufacture or subsequent service.

When working at a wavelength not available in the Wavelength menu, use the custom option in that menu and enter the wavelength you need. The wavelength you enter must be within the range of valid wavelengths. For High Power and Energy Detectors, the 841-PE interpolates a wavelength correction factor using the pre-programmed data in the detector's EEPROM.

The above interpolation option is not available for the 818-series Low Power Detectors, nor would it be valid, because of the rapid changes the responsivity exhibits as a function of wavelength. 818-series detectors are normally supplied with an OD3 attenuator, and are calibrated both with and without the attenuator. However, only the calibration data *without the attenuator* is

programmed into the 841 EEPROM. If an absolute power is desired, and the wavelength of the light source is not on the list of available wavelengths in the Wavelength menu, or if you are using the detector *with* its attenuator, then you will need to calculate the correction factor using your detector's Calibration Report.

The correction factor, C_f , is the responsivity of the detector at the current wavelength, *without* the attenuator, R_0 , divided by the responsivity at the desired wavelength, or the same wavelength but with the attenuator, R'.

$$C_f = \frac{R_0}{R'}$$

Once you have entered the correction factor in the 841-PE (see Corrections Setting below), go to Save Settings under the Settings menu, and save it. This will reload the correction factor every time you reboot the 841-PE with the same type of detector.

2.1.3.2 Corrections Setting

The user can apply up to 2 Multipliers (or Correction Factors) and 2 Offsets to the detector reading. For Low Power Detectors, correction factors are used when operating at a non-standard wavelength, as per above. However, when using High Power or Energy Detectors, correction factors are most useful when sampling a percentage of a powerful laser beam or correcting for absorption along an optical path. The menu displays the values of correction factors that are being applied to the measurements. They may also be viewed in the **Display Status menu** (see Figure 2-8).

Display	Scale	Settings	Ctrl	?
		Wavelength →		
		Corrections	None	
		Data Sampling	Multiplier #1 (0.1200000)	
		Trig Level (2.0%)	Offset #1	
		Save Settings	Multiplier #2	
		Load Settings	Offset #2	

Fig. 2.12 Settings/Corrections menu

To activate the correction factor, select **Corrections** in the **Settings Menu** and then select Multiplier or Offset. A dialog box opens where you enter the correction value in percentage or in absolute value. This number will then

multiply, or add, to the actual measured value to calculate the corrected value. The 841-PE will then display the corrected value.

For example, if you are measuring a laser beam passing through the 99.9% back reflector of a laser (giving $1/1000^{\text{th}}$ of the real value), choose **Multiplier** #1 and enter 1000 in the dialog box. The 841-PE will display the laser's actual power rather than the measured 0.1% sample on the main display.

The corrections are applied mathematically in the order shown in the menu. Therefore, to apply an offset before a multiplier you would enter a value for Offset #1 and a value for Multiplier #2 and leave Multiplier #1 at the default value. The default value for the multipliers is 1, and the default for the offsets is 0.

When a correction factor is active the "Head" value will be different from the displayed measurement. The Head value is displayed at the bottom left of the screen. The corrected measurement appears in the center of the screen (see Figure 2-4).

It is also essential to make sure that the actual measured value complies with the power and energy limits of the detector head. The Autoscale option is the default selection. You can select a specific scale but it must always be based on the actual physical measured value and **not on the corrected values**. Of course, the displayed values and the display scale selection are then calculated to take into account the correction factors.

Note that the **Statistics** are computed for the corrected values only.

To disable the correction factor, re-select the Correction Factor (multiplier, offset) in the **Corrections submenu** of the **Settings menu**. Then select **None** in that submenu.

2.1.3.3 Data Sampling Settings

The 841-PE can display a complete statistical analysis of power or energy measurements. The Data Sampling menu is used to set up the data sampling parameters for calculating the Statistics. You have complete control over the data sampling. Use the defaults or select your own sample rate, sample period, and the time period or number of points over which the statistics are to be performed. The 841-PE can be set to either calculate the statistics for a single sample and stop or to repeat continuously. Take data for a few seconds or a few weeks. You have the flexibility to handle any application, from analyzing a single short pulse with high resolution to sampling performance over a period of months.

Selecting the **Data Sampling mode** in the **Settings menu** opens a Dialog Box where you enter the sample rate, the sample period, total duration, and the time stamp, if required.

The statistics being captured and calculated can be monitored by simply selecting **Statistics** in the **Display** menu. You can switch back to any other display mode without affecting the measurement or the statistics. You can also click the **Reset** button in the display to clear all the statistical parameters

and start all over again by selecting the **Start** button. The statistical parameters that are calculated are listed in Table 2.1.

Statistical Parameters	Power	Energy	Definition
Current value			Value of the most recent measurement
Maximum value			Highest value in the sample period, E_{max} or P_{max}
Minimum value			Lowest value in the sample period, E_{min} or P_{min}
Average value		\checkmark	Rolling average of values in the sample, E_{avg} or P_{avg}
Standard Deviation			A measure of the spread of the data around the average.
			$STD = \sqrt{\frac{\sum_{i=1}^{n} (E_i - E_{avg})^2}{n-1}}, STD = \sqrt{\frac{\sum_{i=1}^{n} (P_i - P_{avg})^2}{n-1}}$
RMS stability	V	V	Root mean square stability represents the standard deviation as a percent of the average.
			$RMS = \frac{STD}{E_{avg}} \times 100$, $RMS = \frac{STD}{P_{avg}} \times 100$
PTP Stability	V		Shows the spread between the highest and lowest point in the sample as a percent.
			$PTP = \frac{E_{\text{max}} - E_{\text{min}}}{E_{avg}} \times 100 , PTP = \frac{P_{\text{max}} - P_{\text{min}}}{P_{avg}} \times 100$
Time			Time elapsed since beginning the sample.
Pulse #			Number of the last pulse added to the sample.
Repetition Rate			Frequency of pulses coming from the laser, <i>PRR</i>
Average Power		V	Power calculated from the pulse energies and repetition rate.
			$P_{avg} = E_{avg} \times PRR$

Table 2.1. Statistical Parameters

To Activate the Statistics, select Statistics from the Ctrl menu, and then select Start in the submenu.

The 841-PE starts compiling statistics on your measurements as soon as the Statistics mode is activated. Select **Stop** in the same submenu to turn the

Statistics mode off. When you stop the statistics, the last values remain in the statistics display window for you to view later. If you click **Start** again, the 841-PE will resume the statistics from that point, compiling the new measurements with the previous. Click **Reset** and all the statistical parameters will be cleared and set to zero. If you click **Reset** without stopping, all the statistical parameters will be cleared and the statistics will begin from zero automatically.

<u>Alternative</u>: From the **Display** menu, select **Statistics** to enter the statistics display window. The same commands are available there as buttons. Selecting the **Close** button closes the window but does not turn off the Statistics mode or interfere with the calculations. Selecting the **Stop** button stops the calculation of new statistics but does not close the window so that you can review the final values.

The 841-PE uses default sample parameters unless you set them yourself.

To View the Statistics, select Statistics from the Display menu.

To Set the Data Sample Parameters, select Data Sampling from the Settings menu.

Figure 2-13 shows the window for setting the data sampling parameters. Use the \rightarrow RIGHT arrow key to move through the parameters and units windows. Move to the one you want to set. Then use the $\uparrow \downarrow$ UP and DOWN arrow keys to change the value. If you want to enter a value that is not available using the up and down arrow keys, then press the \downarrow Enter key instead. The keypad data entry dialogue box shown in Figure 2-2 will pop up to allow you to enter a custom value. When you are finished, use the \rightarrow RIGHT arrow key to select the CLOSE box and press the \downarrow Enter key. Table 2-2 defines the various parameters.

The key points to remember whether using a High Power or Energy Detector are:

Sample Rate	Controls how fast you collect data.	Eg. 10 points/second or 50% of pulses
Sample Period	Controls how much data the statistics are	Eg. 5 minute or 1 day averages
>	computed for.	
Total Duration	Controls how long the 841-PE will acquire	Eg. 1 period, 5 hours or 1000 pulses
>	data and/or do statistics.	

Often the Total Duration and Sample Period will be the same but the 841-PE gives you the flexibility for any application. For example, with the 841-PE you can see 5 minute averages of your laser performance as you check it during the day and have it stop and hold the last 5 minutes worth of statistics after 20 hours.

Fig. 2-13 Data sampling parameters window.

PARAMETER	Choices Description		Default
Sample Rate	Integers 0 to 100 custom value 0 to 300	Sets the time between each sample. Specify it as a number of points per unit of time. (For example, for 1 second between samples, set to 60 points per minute)	10 (Power) 0 (Energy)
Sample rate units	pts/Second pts/Minute pts/Hour pts/Day	Sets the time period for the number of points entered above. Maximum is 100 points/second, Minimum is 1 point/day. Time between samples = 1/(sample rate)	pts/Second
% of Pulses Sampled Energy only	Integers 0 to 100	Sets the fraction of the incoming pulses sampled for the statistics calculations and data recording.	100 (Energy)
Sample Period	Integers 0 to 100 custom value 0 to 300 time units or 0 to 100,000 points	The time over which samples are to be averaged. Sets the number of samples used in the average and standard deviation <i>(For example, for each average to be based on 5 minutes of data, set to 5 minutes)</i> . This is also the time period displayed by the Histogram and Line plot.	10 (Power) 500 (Energy)
Sample period units	Second Minute Hour	Sets the time period for the value entered above. Maximum is 300 weeks or 100,000 points Minimum is 1 second or 1 point	Minute (Power) Points (Energy)

 Table 2.2
 Data Sampling Parameters

	Day		
	Week		
	Points		
Total Duration	Integers 0 to 100 custom value 0 to 300 time units or 0 to 100,000 points	The time period for which samples are reported (to the display and output). Select a time period or a number of points (For example, report statistics for 24 hours). Often the total duration and sample period will be the same. The 841-PE automatically clears and recalculates the statistics at the end of each sample period unless you manually stop it.	1
Total Duration units	Continuous	Sets the time period for the value entered above.	Period
	Periods Weeks	To make the statistics stop after one sample period, select "1" and "Period."	
	Days	Maximum of 100 "periods" can be as high as 100 weeks.	
	Hours	Minimum is 1 second.	
	Minutes		
	Seconds		
Time Stamp	Yes No	To have a time stamp appear with the data and go directly to the exit mode, select "yes" by pressing the down arrow key until "Yes" appears on the screen, then press the right arrow key. Selecting "Yes" writes a time stamp with each data point. This is a relative time stamp that always begins with zero. Using the time stamp facilitates data analysis but consumes more memory, thus limiting the total number of data points that can be taken.	No
		To set the Time Stamp , press the down arrow key until "Yes" appears on the screen, then press the Enter key. The "set 841-PE time" dialog box appears. Set Date: To set the date, use the right and left arrow keys to select the date in the format M D Y. The UP arrow adds units while the DOWN arrow subtracts units. To return to the Time dialog box, press the F Function key. Set Time: To set the time, use the right and left arrow keys to select the time (hours or minutes) using the 24 hour clock. The UP arrow adds	

		units while the DOWN arrow subtracts units. Press the Enter key to validate the selection. The 841-PE time will remain as long as the battery lasts. To save your selection, press Done .	
Exit Mode	Close Close & start Statistics Close & Start Acquisition Close & Start Both	The user must make a selection here in order to exit the data sampling parameters input window. To close, select Close and press Enter. To calculate the statistics, select the Close and Start Statistics option, and press Enter. To save the acquisition parameters and activate the data sampling, select the Close and Start Acquisition option, and press Enter. The 841-PE begins storing data in memory. To calculate the statistics and save the raw data to memory at the same time, select the Close and Start Both option.	Close

2.1.3.4 Trig Level Setting

The **Trigger Level** only functions if an Energy Detector is connected or if a High Power Detector is used in **Single Pulse Energy (Calorimeter)** mode. This option allows the user to change the trigger level to something other than the 2% of full-scale default value. This proves to be especially useful in noisy environments. Acceptable values range from 0.1% to 99.9%. Caution should be taken when choosing a lower trigger level than the 2% default value in a high noise environment.

To change the trigger level value, access the dialog box by selecting **Trig Level** from the **Settings** menu and enter the desired number in percent or in decimal form. The 841-PE will not detect pulses with a value under the Trig Level. Be careful to select a scale that is close to the measured value if the Trig Level is high.

The value of the trigger level is shown on the side of the **Trig level** menu, confirming that it is activated to a specific user level.

Selecting a high value for the trigger level may cause problems with the detection of widely varying energy values when in the Autoscale mode. The Autoscale function uses the energy level of the last pulse to set the scale level. Therefore it will not detect the next pulses if they are lower than the trigger level. As a result, the Autoscale may become caught on a high scale value. To solve this problem, select a lower value for the trig level, change the scale manually or reset the autoscale by reselecting **Autoscale** in the **Scale** menu.

ERRATIC TRIGGERING?

For a few detector heads, in electrically noisy environments, it is possible that the 841-PE will inadvertently trigger on the noise. In that case, increase the trigger level to 3% or higher if necessary.

It is always good practice to reduce electrical noise generation or shield the detector and meter when measuring very low pulse energies.

2.1.3.5 Period Multiplier

The period multiplier applies to the graph. It multiplies the period by the number entered. For example, if the original period is ten minutes and you enter two, then the period will change to twenty minutes. Use the period multiplier when using High Power Detectors only.

2.1.3.6 Refer Values

Comparisons of your power measurements to certain user-defined reference values are easy to make. If your current measurements lie within your established **Upper** and **Lower bounds**, then they meet the standards. If they go above or below the bounds, then there could be a quality problem, which triggers a fail message. The Reference Values option has two modes: **Threshold** mode and **Pass/Fail** mode.

Display	Scale	Settings	Ctrl	?
		Graphical Mode		
		Full Display Mode		
		Analog Out		
		Reset	Threshold	
		Off	Pass/Fail	

Fig. 2-14 Pass/Fail menu

Threshold mode: Use this mode to set or change the upper and lower bounds, reference values and to restore the last values. To set or change a setting, use the arrow keys and scroll to Set Upper Bound, Set Lower Bound, Close, Set Reference Values, or Restore Last Values. Highlight your choice and press the \downarrow **Enter** key. You may select **Upper Bound** only, **Lower Bound** only or both.

Pass/Fail / Graphical mode: View the line plot on the screen with the limits that you selected. If the current power increases to a point above the upper (or lower) bound, "FAIL" appears on the screen.

To reset a failed experiment, press the **F Function** button to see the menu. Scroll to **Settings / Refer Values / Pass/Fail / Reset**, and then press the L
Enter key. "Pass" appears on the screen as the default. It only changes to "fail" if the current power triggers it.

Pass/Fail Full Display mode: Use this mode to see if the current power passes or fails. The default is "pass". If the current power rises above the threshold or falls below it, you will see "fail". In the **Full Display Mode** select **Settings / Refer Values / Pass/Fail** to see the screen display "pass" or "fail". To get to the Menu Bar, press the **F Function** key.

Analog Out: The analog out mode can be used at the same time as the graphical mode or full display mode. Use the Analog Out option to view the voltage with a voltmeter or with an oscilloscope. The range of the output is 0 to 1 Volt. When the voltage increases about the upper limit and "fail" is displayed, the voltage rises. When the voltage is between the threshold limits the graph is displayed and the voltage remains constant.

2.1.3.7 Review Settings

The **Review Settings** option shows all the major adjustable parameters currently active for the detector head in one convenient place. This option contains the same information as in the **Status** option in the **Display** menu.

Digit :	Normal		
	Close	-	
Head: 81	8E-10-50-S		
Date: 20	03/09/10 - 10:34:34		
Unit: Jou	lle		
Sample	Rate: 100% of Pulses		
Sample	Period: 500 Pulses		
Total Du	ration: 1 Periods		

Fig. 2-15 Review Settings screen

2.1.3.8 Save Contrast

To change the screen contrast, press and hold the **Function** key down while *simultaneously* pressing the **UP** or **DOWN arrow** keys. Up makes the contrast lighter, down makes it darker. Once you have reached the desired setting, release the **UP** or **DOWN arrow** keys and the **Function** key. Go to the Settings menu by pressing the function key and then using the arrow keys. To save the contrast setting, highlight the **Save Contrast** option and press the **J Enter** key. The same contrast setting will now be active the next time the 841-PE is turned on.

2.1.3.9 Communication

The Communication option allows you to change the baud rate of the serial port, so that the 841-PE can communicate with your computer. You need to know the baud rate of your computer. The possible baud rates are:

115200
38400
19200
9600

2.1.4 Control Menu

This section gives a complete description of the last group of menus and options available on the 841-PE in the **Control** and **Help** menus. You can refer to Figure 2-16 at any time for a schematic view of the advanced menu structure.

2.1.4.1 Zero Offset

This function subtracts the current power reading on the display, at the moment the command is selected with the J Enter key, from all subsequent measurements. Subsequent measurements will be relative to this zero power level. The main purpose of this option is to remove measurement errors caused by either thermal noise (in the case of high power detectors), or ambient light levels (in the case of photodiodes), in the environment of the detector. This can be caused by the fact that the detector has not been thermally stabilized OR there was a heat or light source in the field of view of the detector when the 841-PE was turned on (for example, the hand or body of the user). Use this function once your detector has achieved thermal equilibrium to ensure accurate measurements.

Display	Scale	Settings	Ctrl	?
		Zero Offset	Analog OUT	About 841-PE
		Acquire Data ▶	√ Anticipation	Service
		Transfer File ▶	Display Hi Res	
		Stats. Mode	View Data	
		Relative Mode		
		Calo Mode		

Fig. 2-16 View of the Menu Structure

For instructions on the proper way to adjust the offset to zero your detector see steps 8-10 in Section 2.2.

This feature is only available when using High Power Detectors.

2.1.4.2 Acquire Data

When you select **Start**, the 841-PE begins storing data according to your Data Sampling settings (see Section 2.3.3.3 and Table 2.2). Those settings will control the rate at which memory is used. The **Stop** command halts the data recording but the 841-PE will continue to provide measurements to the display.

The 841-PE records the data in volatile RAM memory. Data in this memory is lost when the 841-PE is turned off. Select **Save Data in Flash** to save the data in the FLASH memory to keep it after the 841-PE is turned off. You can also select **Restore Data from Flash** to transfer data from the FLASH back to the RAM memory. This feature is useful when you want to keep the data in the 841-PE until it can be transferred to a computer at a later time or another location.

2.1.4.3 Transfer File

This option allows you to send a data file stored in the **841-PE's RAM** memory to a computer through the RS-232 or USB port.

Establish a HyperTerminal connection between the PC and the 841-PE. (see Section 3.2 if necessary.) You will be able to view transferred data in the HyperTerminal window.

<u>To record data as a file on a PC</u>: At the top of the HyperTerminal window, go to the **Transfer** dropdown menu and execute the following sequence.

Transfer \rightarrow **Capture text** \rightarrow enter a filename⁷ \rightarrow **Start**

After you have Started and Stopped a data acquisition or restored the data from Flash memory on the 841-PE, select **Data Transfer** in the Ctrl menu or send the serial command ***FDL 0** from the PC. This will send your data to the PC.

Return to the Transfer drop down menu in the HyperTerminal window.

Transfer \rightarrow **Capture text** \rightarrow **Stop**

The data is now in the file you named, in text format, with linefeed separated values. If you used a time stamp, the second column data is tab delimited.

Using the data has never been easier. If you drag the icon of your file onto the Excel icon or an open Excel spreadsheet, your data will automatically be put into the first one (or two) columns of a new spreadsheet. You can also open your file from within Excel. Just click **Finish** on the first screen of Excel's Text Import Wizard when it pops up. You can also copy and paste the data from your file into other files and applications.

⁷ Recommendation: use the **Browse** button to select the directory and folder you want the file in. Enter the file name in that window and click **Save**.

2.1.4.4 Statistics Mode

Use this option to activate the statistics computations. Select **Start** in the submenu and the 841-PE will start compiling statistics. Select **Stop** in the same submenu to turn the Statistics mode off. When you stop the statistics, the last values remain in the statistics display window for you to view later. If you click start again, the 841-PE will resume the statistics from that point compiling the new measurements with the previous. Click **Reset** and all the statistical parameters will be cleared and set to zero. If you click **Reset** without stopping, all the statistical parameters will be cleared and the statistics will begin from zero automatically. These same controls appear as buttons in the Statistics Display window. The default when you power up the 841-PE is off.

2.1.4.5 Relative Mode

Relative mode is similar to **Zero Offset** but it displays the measurement as a percent difference from the value on screen when this option is selected. The reading will become zero the same as with **Zero Offset** but when the power changes it will be displayed as a percent value.

This is useful for monitoring variations in laser power. For example, in a quality assurance application the user may just want to make sure the power does not vary more than 5% over a certain time period to qualify a system. If the laser power is 40W when this is selected, a laser power of 38 W would be shown as -5%. To do this same task in power units you would select **Zero Offset** when the laser is at 40 W and 38 W would display as -2 W. Refer to **Zero Offset** above. This command is a toggle so a checkmark indicates when it is on. Select it again to turn it off. The default is off.

$\sqrt{\mathbf{Relative\ mode}}$	Relative mode is ON
Relative mode	Relative mode is OFF

2.1.4.6 Calo Mode

This calorimeter feature allows you to measure the energy contained in a single pulse with an **818P-Series High Power Detector**. This mode of operation gives access to the same options as when using an 818E-Series Energy Detector. The only restriction is that the time delay between pulses,

$$Delay = \left(\frac{1}{Rep. Rate}\right)$$

must be more than three times the constant time of the detector. (Please refer to the instruction manual for the specific power detector you are using.)

You must select the scale manually because the Autoscale is deactivated when you select **Calo Mode**.

This command is a toggle so a checkmark indicates when it is on. Select it again to turn it off. The default is off.

Keep in mind that the 818P-Series High Power detectors are optimized to sustain high average power, not high peak energy. Always keep the energy density below the maximum energy density quoted in the manual for that specific detector.

The single pulse energy measured in **Calo Mode** is precise to $\pm 5\%$ of the power measurement calibration. This is larger than the uncertainty in the power measurement (typically $\pm 2.5\%$) because the energy calibration is computed from the power measurement calibration.

2.1.4.7 Analog OUT

This item is a toggle switch. Select it to turn the analog output on and off. A checkmark shows when it is on. The default is off.

This output allows the monitoring of the laser average power or energy with external equipment such as an oscilloscope, a computer with an analog interface, a voltmeter, etc.

The output signal represents the amplified and anticipated power detector response in the case of a power measurement. In the case of an energy measurement, the output signal is a DC voltage representing the pulse energy value.

In order to improve the signal to noise ratio, the 1 volt value corresponds to the full scale reading of the selected range. The measured power or energy is then related to the output voltage and to the selected range according to the following equations:

 $Power = V_{output} \times Range$ $Energy = V_{output} \times Range$

For example, an output of 0.4 Volts on the 30 W scale corresponds to 12 Watts of laser power. If on the 10 W scale, then 0.4 Volts signifies 4 Watts.

2.1.4.8 Anticipation

Use Anticipation to deactivate the power meter acceleration software that provides the "anticipation" response. By using advanced algorithms and known properties of the detector, this software allows the 841-PE to provide a very accurate power measurement a few seconds faster than the natural response of a thermopile power detector. It accelerates the natural response by a factor of 5 to 10.

Turning off the anticipation will result in a slower response but it can provide a more stable measured value in a noisy environment.

A checkmark shows when it is activated. It is a toggle switch so select it to change it between off and on. The default is on.

2.1.4.9 Display Hi Res

This menu item is a toggle switch that turns on and off a higher precision display mode. It will increase the value displayed numerically on the screen by one significant digit especially for relative changes in power or energy. Absolute accuracy depends on the detector head.

2.1.4.10 View Data

Use **View Data** to transfer a file in the notation you would like to see it in: scientific or standard. To transfer the file in scientific notation select Ctrl / Sci Notation. To transfer the file in standard notation, select Ctrl / Std Notation.

2.1.4.11 "?"

This menu contains any help and service information available for this version of the 841-PE firmware. That includes "About 841-PE" to identify the firmware version currently loaded in the instrument as well as contact information for Newport service. Future help, FAQ, and detector head information will appear here.

3 Computer Interfacing

Installation

Since the 841-PE comes standard with a USB cable, we will discuss communication via the USB interface. The instructions below assume you are running Windows 2000 or XP as the operating system. The easiest way to get up and running is to install the USB drivers first, before even connecting the USB cable. A special RS-232 cable is available separately (part number 841-CAB).

USE WITH PC ONLY

The software for the 841-PE is not compatible with a Macintosh computer.

Insert the Newport *841 Series Software* CD into your computer's CD-ROM drive. Navigate to and open the USB Driver Installer. Follow the on-screen instructions to complete the installation.

If you connect the USB cable to your PC before installing the USB drivers, then a window will open that says **Found New Hardware – USB Device** and after several seconds to a minute the **Found New Hardware Wizard** will appear. Browse to the USB Driver WinXP folder within the USB Drivers folder. The Wizard will find the correct file and then you can complete the installation.

Press the Next or Continue button as appropriate until the installation is complete. The final window should display "Prolific USB-to-Serial Comm Port." Press Finish to exit.

At the end of this process, a new serial COM port will be added to the list of communication ports. It may be used like any other serial port. You will need to know the COM port number to set up the serial connection to the 841-PE (see section 3.2.1 below).

NOTE:

Although the 841-PE is equipped with both a mini-serial port and a USB port, they cannot be used at the same time. Only one port should be connected at a time.

3.1.1 COM Port Verification

To verify the USB installation and find the COM port number click:

Start \rightarrow Settings \rightarrow Control Panel \rightarrow System \rightarrow Device Manager

(Instructions may vary with operating system and version. For Win2000/XP there is an additional step between and System and Device Manager.)

Scroll down to **Ports (COM & LPT)** and double click that line. One of the options should be **Prolific USB-to-Serial Comm Port (COM#)**.

Note the COM port number. You will need it for the next step.

3.1.2 Establishing Communication

You may use any serial communications software that you are familiar with. The instructions given here are for HyperTerminal because it is widely available on PCs with Windows[™]. Select:

$Start \rightarrow Programs \rightarrow Accessories \rightarrow Communications \rightarrow HyperTerminal$

To save communication settings, enter a name for the connection. In the drop down menu for "**Connect using**" select the COM port noted above (Section 3.2.1). Select **OK**.

Input the following settings into the communications parameter window that appears next.

Bits per second	115,200
Data bits	8
Parity	None
Stop bits	1
Flow control	None

Click **OK** to begin entering serial commands in the HyperTerminal window.

TO ECHO COMMANDS

The commands you type will not appear in the HyperTerminal window unless you configure the HyperTerminal to do so. Only the response from the 841-PE will be displayed. If you prefer to see the commands you are typing in the HyperTerminal window, click the File menu and execute the following sequence:

 $File \rightarrow Properties \rightarrow Settings \ (tab) \rightarrow ASCII \ setup \rightarrow select \ ``Echo \ typed \ characters \ locally'' \rightarrow OK$

Let the connection, type ***VER** in the HyperTerminal window and press Let **ENTER**. If the response is the version of your 841-PE, you are successfully connected and ready to send serial commands.

3.1.3 HyperTerminal Settings Shortcut

When you end the session, HyperTerminal asks if you want to save your settings. To avoid inputting the communication parameters again in the future, save by clicking **Yes**. The next time you execute the string of commands shown in section 3.2.2 above, the name of your session will appear after HyperTerminal. Clicking on the session name will open the connection using the saved settings. To avoid re-entering the string of commands, put a shortcut to this file on your desktop using this procedure:

Search for the file name. Select the file. Right click and select Shortcut in the drop down menu.

Software

User-friendly communication software specially made for the 841-PE is included on the CD that came with this unit. It will be found in the folder labeled *PC Interface for 841-PE-V200*. Open this folder and double-click on setup.exe and follow the instructions given by the Installation Wizard.

Please visit our website for the most recent version (<u>www.Newport.com</u>). This software basically transforms your PC screen into a large 841-PE screen enabling you to control and see your information from a distance, while saving data. LabViewTM drivers are also available to let you customize 841-PE applications on your PC. You can also upgrade the firmware on your 841-PE on the same web-page (see Section 6.2 for details).

4 Command Reference

Commands and Queries

The traditional serial communication interface also allows you to operate the 841-PE remotely. If no automated acquisition is involved (i.e. no programming), we recommend using the 841 Series Software on the included CD because it is very simple to use. In the case of automated data acquisition, controlled by other software, use the commands in Section 4.1.2 to control the 841-PE. These commands are divided into two groups: **Commands** and **Queries**.

Commands allow you to change the 841-PE's settings without using the 841-PE's keypad. Commands do not yield any data. The only response is a confirmation that the command has been executed.

Queries are used to retrieve data, or to obtain information on the current status of the 841-PE. They do not change the settings of the 841-PE, they just return the requested information.

When it receives a command, the 841-PE sends an acknowledgement of the command to the host device in the form of a short message describing the change that has been made.

4.1.1 Command Format

Commands or Queries may be sent as text strings (text mode) or numerical values (binary mode). The 841-PE automatically recognizes whether the received data is a text command or a binary command⁸. You are therefore free to send data in either form at any time. In this section we will only discuss text mode. All commands will receive one of two possible responses: data (for Queries) or ACK ("acknowledged" – for Commands).

All Commands or Queries must begin with an asterisk (*) and end with a Line-Feed <LF>, Carriage-Return <CR>, or both. All parameters must be separated by at least one space. The case is insensitive. Replies to Commands or Queries end with a Carriage-Return <CR> and Line-Feed <LF>.

⁸ Binary programming should only be attempted by advanced programmers. For information on using binary mode, see **Appendix B – Binary Programming**.

Example	Command	Response from 841-PE
Turn on backlight	*BKL 1 <enter></enter>	ACK <cr><lf></lf></cr>
Get data value	*CVU <enter></enter>	Current Value: 0.001616 <cr><lf></lf></cr>
Check battery	*BAT <enter></enter>	The Battery Power is Low <cr><lf></lf></cr>
Get Statistics	*VSU <enter></enter>	Current Value: 0.002013 Maximum: 0.002011 Minimum: 0.000000 Average: 0.000001 Standard Deviation: 0.000048 RMS Stability: 7.181641% PTP Stability: 18.296875% Time: 455 Acquisition Time: 600 <cr><lf></lf></cr>

In case of an error, the reply string is in the following format:

Error X: reason [enter]

X is the error code, and **reason** is an explanation. See Chapter 5: Error Codes, for a detailed description of errors.

Because all replies end with a **CR** or **LF** (or both), a text reply contains tabulations when many elements need to be separated in the string. This is useful when exporting data to a spreadsheet.

4.1.2 Command Directory

DISPLAY COMMANDS

	Text		
Command Name	Command	Description	Handle ⁹
Set Display	SDU	Change on-screen display mode.	1157
Set Scale	SSA	Manually set scale.	1130
Set dBm Display	DBU	Toggle dBm unit on & off (Low Power Detectors only)	1159
Set High Resolution Display	SHL	Toggles additional significant figures to the displayed reading	1161

MEASUREMENT COMMANDS

DATA ACQUISITION

Query Current Value	CVU	Get the value currently displayed on the screen	1200
Query New Value Ready	NVU	Determine if new reading is available	1201
Query Statistics Data	VSU	Read statistics data	1202
Set Logging Start /Stop	LOG	Start storing data in meter (EEPROM)	1171
File Download	FDL	Retrieve a file stored in the meter	1172
SETUP			
Set Wavelength Correction	SWA	Specify the wavelength (818P & 818E detectors only)	1125
Set Attenuator	ATU	Toggles attenuator correction (818P & 818E detectors only)	1162
Set Multipliers	SMU	Set the value of the multipliers	1128
Set Offsets	SOU	Set the value of the offsets	1129
Query Data Sampling Settings	RDS	Get current data sampling parameters	1151
Configure Data Sampling	DSU	Set the data sampling parameters	1152
Set Trigger Level	TLA	Set the internal trigger level when measuring pulse energy	1112
MEASUREMENT CONTROL			
Enable Statistics	ESU	Start, stop or reset the statistic calculations	1155
Set Calorimeter Mode	SCA	Turn Calorimeter mode on or off	1160
Set Anticipation	EAA	Turn power measurement anticipation on or off	1123
Set Zero Offset	EOA	Zero the reading to remove noise	1120

INSTRUMENT AND DETECTOR INFORMATION COMMANDS

Query Version	VER	Get firmware version of the meter	1001
Query Detector Head Name	HEA	Get model name of the detector head	1100
Query Status	STA	Retrieve detector information and monitor settings	1005
Query Battery Power	BAT	Get state of remaining battery power	1006
Set Internal Clock	CLK	Adjust time and date of meter	1165

INSTRUMENT CONTROL COMMANDS

Set Backlight	BKL	Turn the display backlight on or off	1003
Set Analog Output	ANO	Enable or disable the analog output port	1150

COMMUNICATIONS COMMANDS

Test Communication	KPA	Test communication between meter and PC	1000
Init Serial Port	BRS	Change baud rate of the serial port	1004

⁹"Handle" in the far right column is for Binary Mode. It is given here for reference only. Ignore if using Text Mode.

Serial commands

4.1.3 Display Commands

4.1.3.1 Set Display

This command is used to change the device's on-screen display mode.

Text Command	Parameters	Return
SDU	Display Mode	АСК

Available display modes:

Parameter

- **0** Real-Time Display Default display mode. It shows the current measured value.
- 1 Histogram Shows a short history of the acquired data.
- **2** Statistic Shows all data relevant to statistics.
- **3** Digital Needle Provides a simulated analog needle.
- 4 Lineplot Displays the data history as a line plot.

4.1.3.2 Set Scale

This command is used to force the display of the current data into a specific range. The lower range is always zero, and the higher ranges can be found in the table below. The Auto scale applies the best scale for the current values in real time. The parameter must be one of the identifiers in the table below. Remember that the serial protocol is not case-sensitive in text mode.

Text Command	Parameters	Return
SSA	Scale identifier or index	ACK

Scale Identifiers:

Text Mode	Scale
Auto	optimum
1p	1 picowatt or picojoule
3p	3 picowatts or picojoules
10p	10 picowatts or picojoules
30p	30 picowatts or picojoules
100p	100 picowatts or picojoules
300p	300 picowatts or picojoules
1n	1 nanowatt or nanojoule
3n	3 nanowatts or nanojoules
10n	10 nanowatts or nanojoules
30n	30 nanowatts or nanojoules
100n	100 nanowatts or nanojoules
300n	300 nanowatts or nanojoules
1u	1 microwatt or microjoule

3u	3 microwatts or microjoules
10u	10 microwatts or microjoules
30u	30 microwatts or microjoules
100u	100 microwatts or microjoules
300u	300 microwatts or microjoules
1m	1 milliwatt or millijoule
3m	3 milliwatts or millijoules
10m	10 milliwatts or millijoules
30m	30 milliwatts or millijoules
100m	100 milliwatts or millijoules
300m	300 milliwatts or millijoules
1	1 Watt or Joule
3	3 watts or joules
10	10 watts or joules
30	30 watts or joules
100	100 watts or joules
300	300 watts or joules
1k	l kilowatt or kilojoule
3k	3 kilowatts or kilojoules
10k	10 kilowatts or kilojoules
30k	30 kilowatts or kilojoules
100k	100 kilowatts or kilojoules
300k	300 kilowatts or kilojoules
1 meg	1 megawatt or megajoule
3meg	3 megawatts or megajoules
10meg	10 megawatts or megajoules
30meg	30 megawatts or megajoules
100meg	100 megawatts or megajoules
300meg	300 megawatts or megajoules

4.1.3.3 Set dBm Display

This command changes the on-screen display unit to dBm. This option is only available with the 818-series Low-Power Detectors.

Text Command	Parameters	Return
DBU	1 to turn On, 0 to turn Off	ACK

Default: Off

4.1.3.4 Set High Resolution Display

This command is used to add significant digits to the on-screen reading.

,	Text Command	Parameters	Return
S	SHL	1 to turn On, 0 to turn Off	ACK

Default: Off

4.1.4 Measurement Commands -- Data Acquisition

4.1.4.1 Query Current Value

This command is used to query the value that is currently being displayed on the device's screen. The value is displayed in Watts or in Joules (not in dBm).

Text Command	Return
CVU	Current value

For example, a 12 mW reading would be displayed like this:

Current Value: 0.012

4.1.4.2 Query New Value Ready

This command is used to check whether a new value is available from the device. Though optional, its use is recommended when used with single pulse operations.

Text Command	Return
NVU	Available/ Not Available <cr></cr>
	<lf></lf>

Example	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Response from 841-PE
Text Command:	*NVU <enter></enter>	New Data Not Available <cr> <lf></lf></cr>

Note that the **Query Current Value** and **Query Statistic Data** commands will return the current values from the device even if they have not been updated since the last query.

4.1.4.3 Query Statistics Data

This command is used to read all the statistics data, provided that the device has previously been set into statistic mode.

Text Command	Return
VSU	Statistics

All the data and relevant identifiers are formatted into a tab-separated string.

4.1.4.4 Set Logging Start/Stop

This command is used to log data on the 841-PE meter's EEPROM.

Text Command	Parameters	Return
LOG	0 to Stop	ACK
	1 starts a raw data acquisition	
	2 starts saving statistics	
	3 saves both raw data and	
	statistics	

This command begins or stops logging data in the device's volatile memory. This is done using the Data Sampling settings (sample rate, time, period...). If you do not want to use the Data Sampling default settings, you must use the DSU command prior to this one (or set the Data Sampling settings manually on the meter).

The Logging starts when the command is issued.

The log file created in the device can then be downloaded to a PC using the File Download (FDL) command, or it can be saved in the meter's EEPROM.

4.1.4.5 File Download

This command is used to retrieve a logged file from the device.

Text Command	Parameters	Return
FDL	File Sequence Number	File data

The file sequence number is required to select the file to be downloaded. Providing zero as a sequence number selects the most recently logged file. As soon as the command is issued, the file transfer begins. In text mode once the command is issued it is possible to start saving all received data until the terminator is received (the terminator is the character string "EOF" followed by a line feed).

The current version of the 841-PE can only hold 1 file in memory at a time. Only zero is accepted as a parameter. Look for updates on our website.

The file data is structured: Each record contains a tag that specifies what it contains:

TAG	Content of record	
0	Raw Value	
1	Time Stamp, Raw Value	
2	average, max value, min value, ptp stability, RMS	

	stability, standard deviation
3 average, max value, min value, ptp stability, RMS	
	stability, standard deviation, average power

The following example is for a file 400 bytes long with timestamps, and containing a 20 char text header.

Example	~~~~~	Response from 841-PE
Text Command:	*FDL 0	<file 0="" data=""> <"EOF"> <lf></lf></file>
Ś	<enter></enter>	
{^^^	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.1.5 Measurement Commands -- Setup

4.1.5.1 Set Wavelength Correction (818P & 818E detectors only)

This command is used to specify the wavelength being used on the detector. The EEPROM in the 15-pin connector on the detector contains measured spectral data for a wide range of wavelengths. If the wavelength input by the user is different from the predefined list of wavelengths on the meter, a custom value is interpolated. Specifying zero as a wavelength or providing an out-of-bound value as a parameter restores the default settings. A valid value is set between the lowest and highest wavelengths supported by the device, and it must be an integer value.

Text Command	Parameters	Return
SWA	Wavelength	ACK

Default: Calibration wavelength (typically 1064 nm)

4.1.5.2 Set Attenuator (818P & 818E detectors only)

This command is used to adjust the processing of the meter with the readings of the detector, depending on whether the detector is using an external attenuator or not.

Text Command	Parameters	Return
ATU	1 to turn On, 0 to turn Off	ACK

Default: Off

4.1.5.3 Set Multipliers

This command is used to set the value of the multipliers.

Text Command	Parameters	Return
SMU	Multiplier 1 (or 2), <multiplier< td=""><td>ACK</td></multiplier<>	ACK
	value>	

Default: 1

There are two multipliers and two offsets that are automatically applied in the following order:

Multiplier $1 \rightarrow \text{Offset } 1 \rightarrow \text{Multiplier } 2 \rightarrow \text{Offset } 2$ It is possible to modify the values of the multipliers by selecting (indexing) them in the first parameter (1 or 2) and entering a new value in the second parameter.

The following example sets multiplier 2 equal to 3.3.

<	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5
3	Example	Response from 841-PE	ξ
1 × × 1	*SMU 2 3.3 <enter></enter>	ACK <cr> <lf></lf></cr>	Ş

4.1.5.4 Set Offsets

This command is used to set the value of the offsets.

Text Command	Parameters	Return
SOU	Offset 1 (or 2), <offset value=""></offset>	ACK

Default: 0

There are two multipliers and two offsets that are automatically used in the following order:

Multiplier 1 \rightarrow Offset 1 \rightarrow Multiplier 2 \rightarrow > Offset 2

It is possible to modify the values of the offsets by selecting (indexing) them in the first parameter (1 or 2) and entering a new value in the second parameter.

The following example sets offset 1 equal to 1.5 milli.

ζ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ξ	Example	Response from 841-PE
Ş	*SOU 1 0.0015 <enter></enter>	ACK <cr> <lf></lf></cr>

The other option available is the Zero-offset. The Zero-offset operation is done first, before those of the Multipliers and Offsets.

4.1.5.5 Query Data Sampling Settings

This command is used to read the current data sampling settings

Text Command	Return
RDS	Sampling Settings info

A string is returned containing all of the data sampling settings.

4.1.5.6 Configure Data Sampling

This command provides the data sampling parameters for the logging and statistics environments. These settings are used when saving data on the device's data storage media, and also to process statistics.

Text Command	Parameters	Return
DSU	Sample Rate, Sample Rate Unit,	ACK
	Sample Period, Sample Period Unit,	
	Total Duration, Total Duration Unit,	
	Time Stamp(On/Off)	

Defaults: S	See '	Table	2.2
-------------	-------	-------	-----

Parameters:				
Sample Rate	Integer value	Times per unit		
Sample Rate Unit	0 = Seconds			
	1 = Minutes			
	2 = Hours			
	3 = Days			
	4 = percentage of pulses (energy			
	only)			
Sample Period	Integer value			
Sample Period Unit	0 = Seconds	At the end of a period,		
	1 = Minutes	statistics are reset.		
	2 = Hours			
	3 = Days			
	4 = Weeks 5 = Pulses (energy only)			
	5 – Pulses (energy only)			
Total Duration	Integer value			
Total Duration Unit	0 = Sample Period(s)			
	1 = Seconds	May be a fixed amount		
	2 = Minutes	of time or points, one		
	3 = Hours	or many periods, or		
	4 = Days	non-stop.		
	5 = Weeks			
	0 = Continuous 7 = Predefined number of points			
	, recentice number of points			
Timestamp	$0 = \mathrm{Off}$	Adds a time stamp for		
	1 = On	all logged data in the sample.		

The following example sets a single data acquisition run for 90 minutes with timestamps at 4 hertz.

y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<u>Example</u>		Response from 841-PE
Text Command:	*DSU 40901101	ACK <cr> <lf></lf></cr>
Ş	<enter></enter>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#### 4.1.5.7 Set Trigger Level

This command sets the internal trigger level when using the device in energy reading mode.

Text Command	Parameters	Return
TLA	Trigger Level (percentage)	ACK

#### Default: 2%

The value should be set between 1 and 100 (floating point values are allowed). In text mode, you may add a "%" symbol after the value for clarity.

Example		Response from 841-PE
Text Command:	*TLA 15.4% <enter></enter>	ACK <cr> <lf></lf></cr>

# 4.1.6 Measurement Commands -- Control

#### 4.1.6.1 Enable Statistics

This command is used start, stop and reset the statistics calculating process on the data currently being acquisitioned.

Text Command	Parameters	Return
ESU	<b>0</b> , <b>1</b> or <b>2</b> (to Disable, Enable or Reset)	ACK

#### Default: Disable

Prior to enabling the statistics, the user should use the LOG1, LOG2 and LOG3 commands to setup the data logging environment.

#### 4.1.6.2 Set Calorimeter Mode

This command is used to toggle Calorimeter mode when using a high power detector.

Text Command	Parameters	Return
SCA	1 to turn On, 0 to turn Off	АСК

Default: Off

#### 4.1.6.3 Set Anticipation

This command is used to enable or disable the anticipation processing when the device is reading from a wattmeter. The anticipation is a softwarereading acceleration algorithm that provides faster readings using the detector's calibration.

Text Command	Parameters	Return
EAA	<b>1</b> to turn On, <b>0</b> to turn Off	ACK

#### Default: On

#### 4.1.6.4 Set Zero Offset

This command subtracts the current value from all future measurements the moment the command is issued to set a new zero point.

Text Command	Parameters	Return
EOA	<b>0</b> to turn Off, 1 to turn On, 2 to	ACK
	undo.	

#### Default: Off

## 4.1.7 Instrument and Detector Information Commands

#### 4.1.7.1 Query Version

This command is used to query the device to get information about the firmware version and the device type.

Text Command	Return
VER	Version number and device type.

444	<u>Example</u>		Response from 841-PE
<	Text Command:	*VER <enter></enter>	841-PE Version 1.01 <cr> <lf></lf></cr>
Ę		~~~~~~	~~~~~~

#### 4.1.7.2 Query Detector Head Name

This command is used to query the model of the current detector head.

<b>Text Command</b>	Return	
HEA	Model of the current head	

Example	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Response from 841-PE
Text Command:	*HEA <enter></enter>	818E-05-25-S <cr> <lf></lf></cr>

#### 4.1.7.3 Query Status

This command is used to view data that is relevant to the current detector head.

Text Command	Return	
STA	Current static and dynamic configuration	
	values	

# Configuration values:

	Field name	Text Mode Data	
1	Head Type	Indicates whether the current	
		detector is a wattmeter, a	
		joulemeter or a photodiode.	
2	Head Version	Number identifying the version of the detector head	
3	Head Serial Number	Alphanumeric string indicating the serial number for the head.	
4	Calibration Sensitivity	Sensitivity at default wavelength, in V/W	
5	Default Wavelength	Default Wavelength in nm	
6	Active Sensitivity	Currently used sensitivity, it may	
		have been modified by variables such as the Active Wavelength	
7	Active Wavelength	Currently used Wavelength in nm	
8	Scale Min Power	Wattmeters: minimum scale index	
-	(wattmeters) OR	(see Set Scale command).	
	Max Power (joulemeters)	Joulemeters: Maximum power	
		supported by the detector (in	
0	Coole Mar Danasa	Watts).	
9	(wattmaters) OR	(see Set Scale command)	
	Max Energy (joulemeters)	Joulemeters: Maximum energy	
	June Energy (Jouremeters)	supported by the detector (in	
		Joules).	
10	Scale Min Energy	Minimum scale index when	
11		reading energy	
11	Scale Max Energy	Maximum scale index when	
12	Current Scale	Currently used scale index (see the	
		Set Scale command)	
13	Calo Mode	Is the Wattmeter being used as a	
		calorimeter? On/Off or N/A.	
14	Anticipation	Is Anticipation enabled? On/Off or N/A	
15	External Trig	Is the External Trig enabled?	
16	Trig Lovel	Un/Off or N/A	
10	The Level	percentage [1-100]	
17	Zero Offset	Currently used offset (see Zero	
		Offset command)	
18	Zero Offset Unit	For Binary mode only	
19	Multiplier #1	Value of the first multiplier	
20	Multiplier #1 Unit	For Binary mode only	
21	Offset #1	Value of the first offset	
22	Offset #1 Unit	For Binary mode only	
23	Multiplier #2	Value of the second	
		multiplier	
24	Multiplier #2 Unit	For Binary mode only	
25	Offset #2	Value of the second offset	

26	Offset #2 Unit	For Binary mode only
27	Currently Logging data	Is the device saving data? Yes / No
28	Analog Output	Is the analog output enabled? Yes / No
29	Resolution	Resolution of the detector
30	<b>Resolution Divider</b>	For Binary mode only
31	Currently Calculating Stats	Are statistics enabled in the device? Yes / No
32	High Resolution Display	Does the device display more numbers after the comma? On/Off
33	Min Wavelength	From 0 to 19, this is an index for the Wavelength table
34	Max Wavelength	From 0 to 19, this is an index for the Wavelength table
35	Upper Bound	For the Pass/Fail test, this is the upper bound
36	Upper Bound Unit	For Binary mode only
37	Lower Bound	For the Pass/Fail test, this is the lower bound
38	Lower Bound Unit	For Binary mode only
39	Reference Value	For the Pass/Fail test, this is the Reference Value
40	Reference Unit	For Binary mode only
41	Pass/Fail Status	Is the Pass/Fail test active? On/Off
42	Threshold	Has the Pass/Fail test failed? Fail/Pass

# 4.1.7.4 Query Battery Power

This command is used to query the device's remaining battery power.

Text Command	Return		
BAT	Low, Medium or High		
/			
Example		Response from 841-PE	
Text Commar	nd: *BAT <enter></enter>	The battery power is High	

#### 4.1.7.5 Set Internal Clock

This command is used to adjust the time and date of the monitor's internal clock. This information is used to timestamp files when data logging.

Text Command	Parameters	Return
CLK	day, month, year, hour,	ACK
	minute, second, AM/PM	

Day: 1 to 31 Month: 1 to 12 Year: 1970 to 2999 Hour: 0 to 23 (PM is assumed if over 12) Minute: 0 to 59 Second: 0 to 59 AM/PM: 0 = Am, 1 = PM

# 4.1.8 Instrument Control Commands

#### 4.1.8.1 Set Backlight

This command is used to turn the backlight of the device display on or off.

Text Command	Parameters	Return
BKL	1 to turn On, 0 to turn Off	ACK

#### Default: Off

#### 4.1.8.2 Set Analog Output

This command is used to enable or disable the output of the current value on the analog port of the meter.

Text Command	Parameters	Return
ANO	1 to Enable, 0 to Disable	ACK

Default: Disabled

## 4.1.9 Communications Commands

#### 4.1.9.1 Test Communication

This command is used to test communication with your 841-PE. The PC is communicating with the meter if you receive the ACK response.

Binary Command	Return
1000	ACK

#### 4.1.9.2 Init Serial Port

This command is used to change the current baud rate of the serial port of the device. Valid parameters are 2400, 9600, 14400, 19200, 38400, or 115200. Upon receipt of the command the 841-PE sends an acknowledgement and then closes and restarts the serial port at the new speed (if the new baud rate

is different from the current one). You must also change the baud rate of your own serial port.

Text Command	Parameters	Return
BRS	new baud rate	ACK

**Default:** 115200

# **5 Error Messages**

#	Error	Comment
1	Command not found	Command is invalid.
2	Invalid Parameter	The parameter value is out of valid range, or not of expected type (text, numeric, flag).
3	Not Enough Parameters	The expected number of parameters should always be sent.
4	Head is not available	Verify that the detector's DB15 connector is fully engaged with the meter.
6	Scale setting not available for specified head	Refer to the Scale table in the Set Scale command.
8	No Data available	The current configuration cannot provide the requested data.
10	Analog output is not available with External Trigger	Cannot use the same connection for output and trigger at the same time.
11	Anticipation is not available	Make sure that the detector is in power-reading mode.
12	Statistics are not available	Statistics must first be enabled.
13	PWC is not available	Make sure that the detector head version supports Personal Wavelength Correction
14	Invalid Command: Too long.	The command must not be over 255 characters long.
15	Too many Parameters	The correct number of parameters must be sent to the device.
16	Invalid Baud Rate	Verify that the device supports the selected baud rate.
18	Calorimeter mode is not available with current head	Calorimeter Mode works only with 818P Series High Power Detectors.
20	Statistics are already enabled	Disable before re-enabling
21	No storage space left	Remove files from the storage media before logging new ones
22	Head is not a Joulemeter	Make sure the head is an Energy Detector.
23	Already logging data	Disable before re-enabling
24	File does not exist	In order to download a file, first run an acquisition, or load it from the EEPROM.

# 6 Maintenance

# USB installation for the 841-PE

The 841-PE has a mini USB type B port. When connected to a PC it emulates a standard serial port. This means that it is possible to connect many 841-PE meters on one computer, without tying up the ordinary serial ports, while keeping a simple interface for which designing software is easy. The 841-PE can function using the USB port power only. It does not utilize the battery energy when linked to a computer through the USB port.

# Free Software and Firmware Upgrades

Keep up-to-date with the latest version of the 841-PE software including new features and options. As new and improved versions of the device's firmware are created, it is in your best interest to update your 841-PE. The latest device firmware can be downloaded from the Newport website.

Access our website at www.Newport.com. Go to the page on the 841-PE. Click on the name of the 841-PE upgrade instructions file to open or download the instructions. You may want to print the instructions. Find the file that corresponds to your 841-PE and follow our simple, easy-to-use instructions.

In summary, you will download and execute the file by selecting it and pressing the return key, it will extract and start the Firmware Updater automatically. You will set the 841-PE in Update Mode by turning it off, and holding the  $\rightarrow$  RIGHT arrow key while turning it on again. Make sure that the correct COM port is selected in the Firmware Updater. You can use the "Test communication with device" button to make sure that everything is well linked. If the device is correctly connected to the computer, simply press the "Update Device" button to start the upload. This should take a few minutes, after which you will need to turn off and restart the 841-PE. The upgrade instructions file contains more detailed step by step instructions for the procedure.

# **Battery Charging**

As mentioned previously, the 841-PE meter is operated using four standard rechargeable Ni-MH batteries. When the **low battery** indicator shows on the lower right corner of the screen, recharge the batteries by connecting the external power supply for six hours. The 841-PE can be either on or off

during this procedure. One battery charge provides up to 7 hours of operation.

The 841-PE may not function properly when the battery level is very low. In that case, connect the power supply to the 841-PE to recharge the battery.

You can operate the 841-PE by plugging it into a USB port when the battery is low, or even removed, but it will not recharge. Recharging requires the external power supply.

# 7 Service Information

The Model 841-PE Hand-Held Power/Energy Meter contains no user serviceable parts. To obtain information regarding factory service, contact Newport Corporation or your Newport representative. Please have the following information available:

- 1. Instrument model number (841-PE)
- 2. Instrument serial number (on rear panel)
- 3. Description of the problem.

If the instrument is to be returned to Newport Corporation, you will be given a Return Number, which you should reference in your shipping documents. Please fill out a copy of the service form, located on the following page, and have the information ready when contacting Newport Corporation. Return the completed service form with the instrument.

To obtain warranty service, contact your nearest Newport agent or send the product, with a description of the problem, transportation and insurance prepaid, to the nearest Newport agent. Newport Corporation assumes no risk for the damage in transit. Newport Corporation will, at its option, repair or replace the defective product free of charge. However, if Newport Corporation determines that the failure is caused by misuse, alterations, accident or abnormal condition of operation or handling, you will be billed for the repair and the repaired product will be returned to you, transportation prepaid.

# Service Form

Experience   Solutions		Newport Corporatio U.S.A. Office: 800-222-644 FAX: 949/253-14
Name	Return Author	<b>rization #</b> (Please obtain RA# prior to return of iter
Address		Date
Country	Phone Number	
P.O. Number	FAX Number	
Item(s) Being Returned:		
Model #	Serial #	
Description		
Reason for return of good	s (please list any specific problems	s):

Notes:		

# Appendix A: Attenuator / Diffuser Calibration Procedure

# Introduction

Newport's 818E-Series Energy Detectors are not normally calibrated with the 818E-DA-25/50 and 818E-DG-25/50 Attenuator/Diffusers. Therefore, to achieve accurate measurements, the **user** must perform a calibration. The calibration procedure is relatively simple. You will first make a measurement without the attenuator, and then with the attenuator. The ratio of these two measurements will be your correction factor.

Using the 841-PE Power & Energy Meter, make sure that the *Attenuator* setting in the *Control* menu <u>is not checked</u>. That is, it must be off. Otherwise, accessing the wavelength correction (*Settings / Corrections menus*) would be impossible.

# Procedure

<u>Step 1</u>: Set up your energy detector to measure the energy of your pulsed laser. If you are working at a wavelength other than the calibrated wavelength, first make the proper correction by following the procedures given in Section 2.3.3.1 - Wavelength Setting. Make sure that the energy level is below the detector's damage threshold and your laser still has good stability.

<u>Step 2</u>: Apply energy for a few minutes to warm up the detector. This will reduce any thermal bias.

<u>Step 3</u>: Measure the energy level without the attenuator. To reduce random uncertainty you should average a number of shots. We recommend at least one hundred shots. This should reduce random errors by a factor of 10 (square root of N, assuming a Gaussian distribution).

<u>Step 4</u>: Install the attenuator. Without changing the laser settings measure the energy level by averaging the same number of shots. All laser settings must be the same as Step 3 (including beam size and position on the detector).

<u>Step 5</u>: Repeat the first measurement (Step 3) to make sure that nothing has changed during the procedure that would invalidate the calibration. A change larger than the uncertainty of your measurements means that something in the laser or environment has changed. You can either add this to your  $\pm$ 

uncertainty when you use the attenuator or try to stabilize the laser and environment and begin again with Step 3.

The correction multiplier for the 841-PE will be given by:

 $T_f = \frac{\text{Reading without attenuator}}{\text{Reading with attenuator}}$ 

Now use this calibration factor for the "Attenuator/Diffuser" when using it at the wavelength established in <u>Step 1</u>.

(no units)

# Appendix B: Binary Programming (for Advanced Programmers)

# **Binary Mode Rules**

Binary commands ("Handles") are much faster since the values are not converted for human comprehension and less data needs to be transferred. They are expected to be sent with the correct number of parameters. Otherwise, an error message will be returned. The binary commands are twobyte words, and all the following parameters are four-byte double words. The command is executed when the device receives the expected amount of data for the command handle and all the parameters.

Binary data are sent from the PC in little endian format. That is the data is sent in chunks of 2 or 4 bytes with the least significant byte sent first. You can program the commands in decimal for sending from the PC. The 841-PE send data in big endian format, that is, the most significant byte comes first. You may need to convert to little endian depending on the software and computer you are using.

Binary command example (backlight ON):	Command	Parameter
Text mode	*BKL	1

Binary mode in decimal		1003	1			
	2 byte word		4 byte word			
Byte:	1st	2nd	1st	2nd	3rd	4th
in Hex, big endian	03	EB	00	00	00	01
as sent by PC in little endian	EB	03	01	00	00	00

Replies to binary commands are also in binary mode, and have a four-byte header and a variable amount of parameters. The header contains two words. The first word is the error indicator : 10= success, 11=error. The second

word is an indicator of the size (in bytes) of the reply parameters or, in the case of an error, the error number.

Structure {	Definition of variables
WORD Handle	Reserves address space of a 2 byte word to store the variable Handle
DWORD ParameterA []	Reserves address space of one 4 byte word to store ParameterA. (4 byte word is a double word)
DWORD ParameterB [6]	Reserves address space of 6 double words to store an array of 6 parameters called ParameterB
} PackedData	
	Later in the program
Handle = 1003	Assign the value for the Backlight command to Handle
ParameterA = 1	Assign to value for ON to the variable ParameterA
SendStringToSerialPort(PackedDa ta, 6)	This routine transfers the data found at the address of structure PackedData to the serial port. 6 bytes used.

An example of how you can use the binary commands is shown below in pseudocode.

#### **Conversion of Values Transferred with Binary Commands**

To prevent cross-platform floating-point conversion error all of the numerical values are transferred as integers. That means floating point values must be converted. The 841-PE meter multiplies the value and converts it from float to integer and then transfers it to you. As a result, you must convert and divide it by the same large number to obtain the original floating point value. **Unit Value** : Every value that needs to be adjusted as a floating point is transferred along with its divider. Therefore, 1.645 W would be transferred in two parts: the integers 1645 and 1000. Simply divide the value by its unit to obtain the original data.

# **Binary Command Reference**

The following is just a summary, showing differences in the commands as they pertain to binary programming. For complete information on the various commands, see Section 4.2 in this manual.

# Set Display

<b>Binary Command</b>	Parameters	Return
1157	Display Mode	ACK

# Set Scale

<b>Binary Command</b>	Parameters	Return
1130	Scale identifier or index	ACK

Send the index of the identifier.

## **Scale Identifiers:**

Binary Identifier	Scale
0	optimum
1	l picowatt or picojoule
2	3 picowatts or picojoules
3	10 picowatts or picojoules
4	30 picowatts or picojoules
5	100 picowatts or picojoules
6	300 picowatts or picojoules
7	1 nanowatt or nanojoule
8	3 nanowatts or nanojoules
9	10 nanowatts or nanojoules
10	30 nanowatts or nanojoules
11	100 nanowatts or nanojoules
12	300 nanowatts or nanojoules
13	1 microwatt or microjoule
14	3 microwatts or microjoules
15	10 microwatts or microjoules
16	30 microwatts or microjoules
17	100 microwatts or microjoules
18	300 microwatts or microjoules
19	1 milliwatt or millijoule
20	3 milliwatts or millijoules
21	10 milliwatts or millijoules
22	30 milliwatts or millijoules
23	100 milliwatts or millijoules
24	300 milliwatts or millijoules
25	1 Watt or Joule
26	3 watts or joules
27	10 watts or joules
28	30 watts or joules
29	100 watts or joules
----	-----------------------------
30	300 watts or joules
31	1 kilowatt or kilojoule
32	3 kilowatts or kilojoules
33	10 kilowatts or kilojoules
34	30 kilowatts or kilojoules
35	100 kilowatts or kilojoules
36	300 kilowatts or kilojoules
37	1 megawatt or megajoule
38	3 megawatts or megajoules
39	10 megawatts or megajoules
40	30 megawatts or megajoules
41	100 megawatts or megajoules
42	300 megawatts or megajoules

## Set dBm Display

<b>Binary Command</b>	Parameters	Return
1159	1 to turn On, 0 to turn Off	ACK

### Set High Resolution Display

<b>Binary Command</b>	Parameters	Return
1161	1 to turn On, 0 to turn Off	ACK

#### **Query Current Value**

<b>Binary Command</b>	Return
1200	Current value

In binary mode, 4 parameters are returned:

-the Current Value

-the Current Value's unit divider

-the Uncorrected Value (raw value before the multiplicators and offsets)

-the Uncorrected Value's unit divider

### **Query New Value Ready**

<b>Binary Command</b>	Return	
	Available/ Not Available <cr> <lf></lf></cr>	
1201	1/0	

## **Query Statistic Data**

<b>Binary Command</b>	Return
1202	Statistics

Current Value This value should be divided by the Current Value Unit. Current Value Unit This is a divider This value should be divided by the Maximum Maximum Unit. Maximum Unit This is a divider This value should be divided by the Minimum Minimum Unit. Minimum Unit This is a divider This value should be divided by the Average Average Unit Average Unit This is a divider Standard Deviation This value should be divided by the Standard Dev Unit. Standard Dev Unit This is a divider **RMS Stability** This value should be divided by 1000. PTP Stability This value should be divided by 1000. Current Time In Period Power measurement only. Default is 0. Total Time of Period Power measurement only. Default is 0. Pulse Number Energy measurement only. Default is 0. **Total Pulses** Energy measurement only. Default is 0. Energy measurement only. Default is 0. Average Power This value should be divided by the Avrg Power Unit Avrg Power Unit This is a divider **Repetition Rate** Energy measurement only. Default is 0. This value should be divided by the Rep Rate unit. Rep Rate Unit This is a divider This value should be divided by the Uncorrected Value Uncorrected Value Unit Uncorrected Value This is a divider Unit

In binary mode, the following structure is sent:

#### Set Logging Start/Stop

<b>Binary Command</b>	Parameters	Return
1171	0 to Stop	ACK
	1 starts a raw data acquisition	
	<b>2</b> starts saving statistics	
	<b>3</b> saves both raw data and	
	statistics	

#### **File Download**

<b>Binary Command</b>	Parameters	Return
1172	File Sequence Number	File data

#### In binary mode, the reply parameters are:

-Size of the text header (in bytes)

-Size of the file's data (in bytes)

-Text header, read as a text string, size specified as parameter 1.

-File Data, read as a stream of DWORDs (4 byte chunks) You should keep receiving and saving data until the receipt of the correct amount (specified as parameter 2). Every DWORD read must be divided by the following DWORD. The file data is transferred in an interlaced fashion so that all data is followed by its Unit value.

The following example is for a file 400 bytes long with timestamps, and containing a 20 char text header.

Example	Response from 841-PE
Handle $= 1172$	20, 180, <20 letters Text Header>,
Parameter $1 = 0$	1, 1(Tag, type 1),
	2,1000 (Time stamp, 0.002 second),
	01243, 1000000(Raw Value, 0.001243 watt),
	<pre> (new Tag, loop until data size reached)</pre>

#### Set Wavelength Correction (818P & E-Series)

<b>Binary Command</b>	Parameters	Return
1125	Wavelength	ACK

#### Set Attenuator (818P & E-Series)

<b>Binary Command</b>	Parameters	Return
1162	1 to turn On, 0 to turn Off	ACK

#### **Set Multipliers**

<b>Binary Command</b>	Parameters	Return
1128	Multiplier 1 (or 2), <multiplier< td=""><td>ACK</td></multiplier<>	ACK
	value>	

In binary mode, the value should be multiplied by 10000, and converted into an integer (instead of a floating point value). This is to prevent any crossplatform floating-point conversion error. The following example sets multiplier 2 equal to 3.3.

Example	Response from 841-PE
Handle = $1128$	ACK
Parameter1 = 2	
Parameter $2 = 33000$	
$\sim$	

#### Set Offsets

<b>Binary Command</b>	Parameters	Return
1129	Offset 1 (or 2), <offset value=""></offset>	ACK

In binary mode, an extra parameter is required: the scale at witch the value is set. This is to prevent any cross-platform floating-point conversion error.

Example	Response from 841-PE
Handle = 1129	ACK
Parameter 1 = 1	5
Parameter2 = 15	Š
Parameter3= 17 (100u scale)	

#### **Query Data Sampling Settings**

<b>Binary Command</b>	Return
1151	Sampling Settings info

Binary mode returns numerical values in the following structure:

Binary Mode response:	
Sample Rate	Integer value of the sample rate.
Sample Rate Unit	<b>0</b> = Seconds
	<b>1</b> = Minutes
	<b>2</b> = Hours
	$3 = \mathrm{Days}$
	4 = Percentage of Pulses Sampled
Sample Period	Integer value of the sample period.
Sample Period Unit	<b>0</b> = Seconds
-	<b>1</b> = Minutes
	<b>2</b> = Hours
	$3 = \mathrm{Days}$
	4 = Weeks
	5 = Number of Pulses
Total Duration	Integer value of the total duration of sampling

	or statistics.
Total Duration Unit	<b>0</b> = One Sample Period
	1 = Seconds
	<b>2</b> = Minutes
	$3 = \mathrm{Hours}$
	4 = Days
	5 = Weeks
	6 = Continuous (loop when done)
	7 = Predefined number of points
Timestamp	$0 = \mathrm{Off}$
	1 = On

# **Configure Data Sampling**

<b>Binary Command</b>	Parameters	Return
1152	Sample Rate, Sample Rate Unit,	ACK
	Sample Period, Sample Period Unit,	
	Total Duration, Total Duration Unit,	
	Time Stamp(On/Off)	

The following example sets a single data acquisition run for 90 minutes with timestamps at 4 Hertz.

<u>Example</u>		Response from 841-PE
Binary Command:	Handle = $1152$	ACK
	Parameter $1 = 4$	
	Parameter $2 = 0$	
	Parameter $3 = 90$	
	Parameter $4 = 1$	
	Parameter $5 = 1$	
	Parameter $6 = 0$	
	Parameter $7 = 1$	

## Set Trigger Level

<b>Binary Command</b>	Parameters	Return
1112	Trigger Level (percentage)	ACK

In binary mode, the value must be multiplied by 1000 and sent as an integer.

Example	~~~~~~	Response from 841-PE
Binary	Handle = $1112$	ACK
Command:	Parameter $1 = 15400$	

#### **Enable Statistics**

<b>Binary Command</b>	Parameters	Return
1155	<b>0</b> , <b>1</b> or <b>2</b> (to Disable, Enable or Reset)	ACK

#### Set Calorimeter Mode

<b>Binary Command</b>	Parameters	Return
1160	1 to turn On, 0 to turn Off	ACK

### **Set Anticipation**

<b>Binary Command</b>	Parameters	Return
1123	<b>1</b> to turn On, <b>0</b> to turn Off	ACK

#### Set Zero Offset

Binary Command	Parameters	Return
1120	<b>0</b> to turn Off, 1 to turn On, 2 to undo.	ACK

### **Query Version**

Binary Command	Return	
1001	Version number and device type.	

The following example is for a hypothetical 841-PE version 1.2. There are four parameters in binary mode. In this case they would be:

Binary parameters	Example	
Header:		
Acknowledge	10	2 byte word
Length of transmission (excluding header)	16	2 byte word
Reply parameters:		
Version number	1	4 byte word
Version Extension	2	4 byte word
Length of Device name string	4	4 byte word
Device name string	841-PE	Text string in ASCII code

# For this one example we show the binary response as the computer would see it.

Example	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Response from 841-PE
Binary Command:	Handle = 1001	0 10 0 16 0 0 0 1 0 0 0 2 0 0 0 4 83 79 76 79

```
      Translation:
      Header:
      0
      10
      0
      16

      0
      10
      = ACK
      0
      16
      = 16 bytes following header

      Reply parameters:
      0
      0
      1
      0
      0
      2
      0
      0

      0
      4
      83
      79
      76
      79
      0
      0
      0
      1
      1
      0
      0
      0
      2
      = extension 1
      0
      0
      0
      1
      = 4 characters coming
      83
      79
      76
      79
      = ASCII code for "841-PE"
      "841
```

#### **Query Detector Head Name**

<b>Binary Command</b>	Return	
1100	Model of the current head	

The following example is for an 818E-05-25-S Energy Detector. There are four parameters in binary mode. In this case they would be:

Binary parameters	<u>Example</u>	
Header:		
Acknowledge	10	2 byte word
Length of transmission (excluding header)	11	2 byte word
Reply parameters:		
Length of Head name string	7	4 byte word
Detector model name	818E-05- 25-S	7 bytes

<u>Example</u>		<u>Response from 841-PE</u>	
Binary	Handle $= 1100$	7 818E-05-25-S	
Command:			

#### **Query Status**

<b>Binary Command</b>	Return	
1005	Current static and dynamic configuration values	

#### **Configuration values:**

	Field name	Binary Mode Data	
1	Head Type	1 = High Power Detectors	
		2 = Energy Detectors	
		3 = Low Power Detectors	

2	Head Version	same	
3	Head Serial Number	Size indicator. The Serial number string is located at the end of the binary data.	
4	Calibration Sensitivity	This is specified in V/W for the Default Wavelength. Divide this value by $100000^{-1}$	
5	Default Wavelength	same	
6	Active Sensitivity	This is specified in V/W for the Active Wavelength. Divide this	
7	Active Wavelength	value by 100000.	
, 8	Scale Min Power (818D	same	
0	series) OR May Dowor (818E sories)	Sunte	
9	Scale Max Power (818P	same	
-	series) OR		
	Max Energy (818E series)		
10	Scale Min Energy	same	
11	Scale Max Energy	same	
12	Current Scale	same	
	Calo Mode	1 = On, $0 = Off$	
14	Anticipation	1 = On, $0 = Off$	
15	External Trig	1 = On, $0 = Off$	
16	Trig Level	Integer number representing a percentage (from 1 to 100).	
17	Zana Official	Divide this value by 1000	
1/	Zero Offset	This is a list to	
18	Zero Offset Unit		
19	Multiplier #1	Divide this value by the Mult#1 Unit	
20	Mult #1 Unit	This is a divider	
21	Offset #1	Divide this value by the Offset#1 Unit .	
22	Offset #1 Unit	This is a divider	
23	Multiplier #2	Divide this value by the Mult#2 Unit.	
24	Mult #2 Unit	This is a divider	
25	Offset #2	Divide this value by the Offset#2 Unit.	
26	Offset #2 Unit	This is a divider	
27	Currently Logging data	1 = On, $0 = Off$	
28	Analog Output	1 = On, $0 = Off$	
29	Resolution	Divide this value by the Resolution Divider	
30	<b>Resolution Divider</b>	This is a divider	
31	Currently Calculating Stats	1 = On, $0 = Off$	
32	High Resolution Display	1 = On, 0 = Off	
33	Min Wavelenght	0 to 19	
34	Max Wavelenght	0 to 19	
35	Upper Bound	Divide this value by the Upper Bound Unit	
36	Upper Bound Unit	This is a divider	
37	Lower Bound	Divide this value by the Lower ound Unit	
38	Lower Bound Unit	This is a divider	
39	Reference Value	Divide this valie by the Reference Unit	
40	Reference Unit	This is a divider	
41	Pass/Fail Status	$1 = \Omega n  0 = \Omega f f$	
42	Throshold	1 = Failed 0 = Pass	
42	i ni esitotu	1 - 1 and $0 - 1$ ass	

# **Query Battery Power**

Binary Command	Return	
1006	1, 2 or 3 (one 4 byte double word)	
Example		Response from 841-PE
Binary	Handle $= 1006$	3 (as one 4 byte word in binary)
Command:		

# Set Internal Clock

<b>Binary Command</b>	Parameters	Return
1165	day, month, year, hour,	ACK
	minute, second, AM/PM	

# Set Backlight

Binary Command	Parameters	Return
1003	1 to turn On, 0 to turn Off	ACK

# Set Analog Output

<b>Binary Command</b>	Parameters	Return
1150	1 to Enable, 0 to Disable	ACK

#### **Test Communication**

<b>Binary Command</b>	Return
1000	ACK

## **Init Serial Port**

<b>Binary Command</b>	Parameters	Return
1004	new baud rate	ACK



Experience | Solutions

#### Visit Newport Online at: www.newport.com



Newport Corporation, Irvine, California, has been certified compliant with ISO 9001 by the British Standards Institution.

Printed in the U.S.